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Numerical simulation of plasma turbulence in the Large Plasma Device �LAPD� �W. Gekelman, H.
Pfister, Z. Lucky et al., Rev. Sci. Instrum. 62, 2875 �1991�� is presented. The model, implemented
in the BOUndary Turbulence code �M. Umansky, X. Xu, B. Dudson et al., Contrib. Plasma Phys.
180, 887 �2009��, includes three-dimensional �3D� collisional fluid equations for plasma density,
electron parallel momentum, and current continuity, and also includes the effects of ion-neutral
collisions. In nonlinear simulations using measured LAPD density profiles but assuming constant
temperature profile for simplicity, self-consistent evolution of instabilities and nonlinearly generated
zonal flows results in a saturated turbulent state. Comparisons of these simulations with
measurements in LAPD plasmas reveal good qualitative and reasonable quantitative agreement, in
particular in frequency spectrum, spatial correlation, and amplitude probability distribution function
of density fluctuations. For comparison with LAPD measurements, the plasma density profile in
simulations is maintained either by direct azimuthal averaging on each time step, or by adding
particle source/sink function. The inferred source/sink values are consistent with the estimated
ionization source and parallel losses in LAPD. These simulations lay the groundwork for more a
comprehensive effort to test fluid turbulence simulation against LAPD data. © 2010 American
Institute of Physics.
�doi:10.1063/1.3527987�

I. INTRODUCTION

Turbulent transport of heat, particles, and momentum
has an impact on a wide variety of plasma phenomena,1–3 but
is of particular importance for laboratory magnetic confine-
ment experiments for fusion energy applications.4–7 A large
number of advances in understanding plasma turbulence has
been made using analytic theory, for example, nonlinear
mode interaction,8,9 instability saturation and secondary
instabilities,10,11 cascades,12,13 and the role of sheared
flow.14–16 However it is increasingly necessary to use direct
numerical simulation as a tool to gain understanding into the
complex nonlinear problem of plasma turbulence. Addition-
ally, numerical simulation is key to the development of a
predictive capability for turbulent transport in fusion plas-
mas. An essential aspect of the development of this capabil-
ity is its validation of numerical simulation against experi-
mental measurement.17,18

While ultimately validation against measurements in
high-temperature fusion plasmas in toroidal geometry must
be undertaken, it is desirable to have a hierarchy of experi-
ments for comparison, with the goal of isolating important
physical effects in the simplest possible geometry.17 Linear
plasma devices such as Large Plasma Device �LAPD�,19

CSDX,20 VINETA,21 LMD,22 HELCAT,23 and MIRABELLE
�Ref. 24� offer an opportunity to validate turbulence and
transport simulations in simple geometry and with boundary
conditions and plasma parameters with reasonable relevance
to tokamak edge and scrape-off-layer plasmas. Thanks to

their low temperature, these devices are highly diagnosable,
providing for detailed comparison against code predictions.
As these plasmas tend to be fairly collisional, fluid �includ-
ing gyrofluid� models have been compared in recent studies,
for example, on LMD,25 CSDX,26 and VINETA.27–29 These
studies have not simply compared code output to data, but
more importantly have been used to extract physics under-
standing: the importance of ion-neutral collisions in zonal
flow damping was explored in LMD;25 simulations of the
VINETA device were focused on exploring the formation
and propagation of turbulent structures,27–29 and recent simu-
lations of the LAPD plasma suggest that sheath boundary
conditions in some regimes could drive strong potential gra-
dients and in this case the Kelvin–Helmholtz instability can
dominate over drift-type instabilities.30

This paper presents modeling of turbulence and transport
in the LAPD �Ref. 19� using a Braginskii fluid model imple-
mented in the BOUndary Turbulence �BOUT� code.31,32

LAPD provides a unique platform for studying turbulence
and transport. Large size perpendicular to the magnetic field
�100��i /a�300� results in a large number of linearly un-
stable modes33 and broadband, fully developed turbulence is
observed.34 Due to its length �17 m�, perpendicular transport
can dominate over parallel losses and changes in turbulent
transport can have a strong impact on radial plasma
profiles.35 The LAPD plasma is similar to tokamak scrape-
off layer �SOL� plasma in the sense that the radial plasma
density and temperature profiles are determined by the com-
petition of the radial turbulent transport, parallel streaming,
and volumetric sources. The use of the BOUT code also pro-a�Electronic mail: tcarter@physics.ucla.edu.
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vides a unique opportunity to directly test in linear geometry
the same code that is also used to simulate tokamak edge
plasmas.

Numerical simulations reported here are done in LAPD
geometry using experimentally measured density profiles. In
order to simplify these initial studies, a flat temperature pro-
file is assumed, flow profiles are allowed to freely evolve in
the simulation and periodic axial boundary conditions are
employed. The simulations show a self-consistent evolution
of turbulence and self-generated electric field and zonal
flows. The density source/sink required to maintain the aver-
age density profile close to the experimental profile is con-
sistent with the ionization source and parallel streaming
losses in LAPD. Overall, these calculations appear to give a
good qualitative and reasonable quantitative match to experi-
mental temporal spectra and are also consistent with the
measured spatial structure and distribution of fluctuation am-
plitude. These results lay the foundation for proceeding with
the more difficult task of simulations with matched density,
temperature, and flow profiles, along with more realistic
axial boundary conditions.

This paper is organized as follows. In Sec. II the main
parameters of LAPD are described, as well as the fluid equa-
tions implemented in the BOUT code that are used to model
the LAPD device. Section III discusses the two methods of
average profile control that are used to maintain the average
density close to the experimental values. A detailed compari-
son of simulated turbulence characteristics to the experimen-
tally measured quantities is presented in Sec. IV. Section V
discusses the particle transport and the density source in the
simulations and also briefly introduces the numerical diag-
nostics used for verifying the solution. Conclusions are pre-
sented in Sec. VI. The appendices demonstrate the derivation
of the azimuthal momentum equation �Appendix A�, deriva-
tion and discussion of the ion viscosity term �Appendix B�,
and a numerical scheme used to avoid unphysical solutions
due to parallel discretization �Appendix C�.

II. PHYSICS MODEL

The LAPD device is a long cylindrical plasma con-
figuration with length L�17 m, vacuum vessel radius
rs=50 cm, typical plasma radius a�30 cm, electron density
ne0�5�1012 cm−3, electron temperature Te�10 eV, and
ion temperature Ti�1 eV, with an externally imposed axial
magnetic field magnetic field Bz�0.25 T. Plasmas are typi-
cally composed of singly ionized helium although argon,
neon, and hydrogen plasmas can also be studied.

For the calculations discussed here, LAPD is modeled as
a cylindrical annulus with inner radius of 15 cm and outer
radius of 45 cm. Using the annulus topology allows the
LAPD geometry to be described in the BOUT code without
any modification of the code itself through using the built-in
tokamak geometry but changing the metric coefficient
values.33 In this setup, the poloidal magnetic field of the
tokamak configuration corresponds to the axial field of
LAPD, and the toroidal field is set to zero as it corresponds
to the azimuthal direction in LAPD. The annulus configura-
tion also avoids the potential complications of the cylindrical

axis singularity. The magnetic field is taken uniform, along
the cylinder axis, and the axial boundary conditions are taken
to be periodic.

The simulations presented here are based on the
Braginskii two-fluid model.36 As discussed in a linear verifi-
cation study33 that uses the same model, collisions play a
very important role in LAPD plasmas. Electron-ion collision
rate is much higher than the characteristic drift frequencies,
�ei���, and the electron mean free path is much shorter than
the parallel length of the device, 	ei
L�. Therefore for low
frequency, long parallel wavelength modes a collisional fluid
model might be reasonable choice for modeling LAPD plas-
mas. Kinetic effects can, however, be very important in
LAPD, in particular for Alfvén waves, where the electron
thermal speed is comparable to the phase speed of the wave,
v��vth,e.

37 Because of the large parallel size of LAPD �and
plasma beta of order the mass ratio, ��me /M�, drift waves
couple to Alfvén waves38 and kinetic effects may be
important.39 It can be argued that even in this case strong
collisions may disrupt kinetic processes such as Landau
damping and fluid description may still provide a good de-
scription of the plasma.40 Nonlinear BOUT simulations using
fluid equations can help to identify the limits of the validity
of the collisional fluid model in LAPD.

For the simulations described here the following set of
equations are used:

�tN = − vE · �N − ���v�eN� , �1�

�tv�e = − vE · �v�e − 
Te

N
��N + ��� − �ev�e, �2�

�t� = − vE · �� − ���Nv�e�

+ b � �N · �vE
2/2 − �in� + i��

2 � . �3�

Here N is the plasma density, v�e is the electron fluid parallel
velocity, and � is the potential vorticity introduced as

� =
def

�� · �N���� �4�

elsewhere,33 except the viscosity term that is added for non-
linear calculations, and is discussed in Appendix B. All the
quantities here are normalized using the Bohm convention.
The model used in BOUT is similar to that employed in other
efforts to simulate linear devices, in particular on LMD,25

CSDX,26 and the recent work by Rogers and Ricci in simu-
lating turbulence in LAPD.30

Density, temperature, and magnetic field are normalized
to reference values nx, Tex �the maximum of the corres-
ponding equilibrium profiles�, and B0, the axial magnetic
field. Frequencies and time derivatives are normalized to
�cix=eB0 /mic: �̂t=�t /�cix, and �̂=� /�cix; velocities are

normalized to the ion sound speed Csx=�Tex /mi, lengths to
the ion sound gyroradius �sx=Csx /�cix, electrostatic potential
to the reference electron temperature, �̂=e� /Tex. In Eqs.

�1�–�4� and further, the ˆ symbol for dimensionless quantities
is dropped for brevity of notation.

While the variables N, v�e, and � are advanced in time,
Eq. �4� is solved to reconstruct the perturbed potential �
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from �. In the code version used in this work, Eq. �4� is
linearized to increase for computational efficiency, since this
equation has to be solved for each evaluation of the right-
hand side of Eqs. �1�–�3�. The vorticity evolution Eq. �3�
replaces the current continuity equation. Derivation and dis-
cussion of this form of equation is presented elsewhere.33

Derivation of the viscosity term is discussed in Appendix B.
Equations �1�–�4� do not include perturbations of the

magnetic field. While electromagnetic effects are essential to
capture the physics of Alfvén and drift-Alfvén waves, pre-
liminary linear simulations indicate that the effect of mag-
netic perturbations on frequencies and growth rates for low
frequency drift wave is small for the LAPD parameters con-
sidered here. A more detailed nonlinear study of the electro-
magnetic physics is a subject of future work and is outside
the scope of this study.

Time evolution Eqs. �1�–�4� are implemented in the nu-
merical code BOUT.31,32 Originally developed for simulations
of the tokamak edge plasma, the code has been adapted to
the cylindrical geometry of LAPD. For the present study
special care is taken to avoid spurious numerical solutions
due to discretization in the coordinate parallel to the mag-
netic field �see Appendix C�. Prior to the turbulence calcula-
tions presented here the code has been successfully verified
for a range of linear instabilities potentially existing in the
LAPD plasma, including the resistive drift, Kelvin–
Helmholtz, and rotational interchange instabilities.33

III. TURBULENT TRANSPORT AND AVERAGE
DENSITY PROFILE

A. Average and local fluctuating fields

In turbulence where the eddy size is much smaller than
the macroscopic system size, the separation of spatial scales
usually leads to separation of time-scales for the evolution of
local and spatially averaged fields. In spite of this separation
of scales, the average and fluctuating quantities are certainly
coupled since gradients provide the source of free energy
driving turbulence; on the other hand, turbulent transport,
along with sources, leads to evolution of the macroscopic
profiles. If no sources are present in the simulation, the pro-
files relax to smaller gradient as is shown in Fig. 1. For
comparison of the simulated and measured turbulence char-
acteristics, this profile evolution is usually undesired, since
this comparison requires collecting a large statistical sample
of data for stationary, experimentally relevant profiles.

For the purposes of considering algorithms for average
profile control in BOUT, it is convenient to represent the fluc-
tuating variables at any spatial location as a sum of the time-
average and perturbation,

f�x,t� = f̄�x� + f̃�x,t� . �5�

For cylindrically symmetric configuration it is also useful
to separate f into azimuthally symmetric and asymmetric
components,

f�x,t� = 	f�x,t�
 + �f�x,t�� , �6�

where 	f
= �1 /2��fd� and �f�= f − 	f
 is the residual. Based
on the ergodic hypothesis, it is assumed that the time-average

f̄ is equal to the azimuthal average 	f
, and statistical mo-

ments of f̃ and �f� are equal. This separation of variables into
an axisymmetric and nonaxisymmetric part does not pre-
clude a full nonlinear solution in BOUT, but it allows easier
control over the average profiles of density, temperature, and
other quantities.

B. Profile maintenance: Suppressing the azimuthal
average

Following self-consistent time evolution of turbulence
and macroscopic transport may be difficult because the time-
scale separation can make such calculations too large to be
practical. Additionally, including first-principles-based
source terms, e.g., for density and temperature, can be com-
plicated, involving models for the plasma source, atomic
physics, radiation transport, etc.

Without attempting a self-consistent time evolution of
turbulence and macroscopic transport one can consider inter-
mediate time-scales �
 t
T, where the macroscopic profiles
can be taken as “frozen,” based on known measured experi-
mental average profiles. In this case the time evolution of
only the nonaxisymmetric part is considered, and a simple
technique of maintaining the desired average profile is filter-
ing out the axisymmetric part of evolving fields. This is il-
lustrated in Figs. 2 and 3 showing the general appearance of
�, �ni, and the evolution of the density and potential fluc-
tuation rms in a simulation with frozen density profile. In
Fig. 3, the potential is split into the turbulence-generated
axisymmetric component 	�
 and the nonaxisymmetric re-
sidual ���=�− 	�
. One can observe the development of a
zonal flow component 	��r�
 corresponding to sheared azi-
muthal flow.

The easiest way to control the average profile is to sup-
press the evolution of the axisymmetric component by sub-
tracting the azimuthal average of the right-hand side of Eqs.
�1�–�3�; for example, for the density,
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FIG. 1. �Color online� Relaxation of the density profile in a simulation
without sources.
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�tN = RHS − 	RHS
�. �7�

This is effectively introducing a time-dependent source/sink
function necessary to maintain exactly the target density
profile.

However, suppressing the axisymmetric part of fluctua-
tions may interfere too much with the solution, and one can
consider doing this not in the full domain but only on the
boundary. This would constrain the boundary values and
may be enough to maintain the average profile close to the
desired.

C. Profile maintenance through adding sources

A more physical method to control the profile is to use a
source/sink term S�r� designed in such a way that the aver-
age profile is maintained close to the experimentally mea-
sured profile. Rather than developing this source from first
principles, an ad hoc source/sink is chosen in order to
achieve the desired steady-state profile in the simulation. As

a first step, a simulation is performed using the method of
subtracting out the azimuthal average to maintain the 	Ni

profile close to the “target” density profile Ni0�r�, which is
based on a representative experimental probe measurements
in LAPD. Once a steady-state turbulence solution is ob-
tained, the radial particle flux is calculated from fluctuating
density and potential,

� = 	NiVEr
 . �8�

Next, the effective volumetric density source S�r� is calcu-
lated as

S = � · � , �9�

which can now be added to the density evolution equation,
Eq. �1�,

�tN = RHS + S�r� . �10�

A subsequent simulation is run with this new source term
and without suppressing the azimuthal average, allowing tur-
bulent transport to compete with the source term. If needed,
another iteration can be made by adjusting the source term to
account for the mismatch between the BOUT predicted profile
and the target. A more comprehensive approach to self-
consistent time evolution of turbulence and average profiles
can be based on adding an adaptive source.41 However it is
beyond the scope of this paper. In the present study extra
iterations were not necessary; a single step was enough to
produce stationary turbulence with average density profile
close to the target profile, as shown in Fig. 4. The evolution
of the density and potential in a typical BOUT simulation with
density source and fixed values of the density at the radial
boundary is presented in Fig. 5 �animation online�.

IV. COMPARISON WITH LAPD DATA

Before any attempt is made to construct a full simulation
of LAPD that self-consistently incorporates transport, first
principles sources/sinks and profile evolution, it is necessary
to ensure that the basic characteristics of the turbulence are
correctly captured by the physical model being used. Initial

FIG. 2. �Color online� Spatial structure of the perturbed density �left� and
turbulence-generated potential �right� at t=5.2 ms.

FIG. 3. �Color online� Time evolution of the density and potential fluctua-
tion rms in a typical simulation. The potential is split into the axisymmetric
�	�
, zonal flow component� and the nonaxisymmetric ��− 	�
�
components.

FIG. 4. �Color online� Instantaneous density profile 	Ni
 in simulation with
density source S�r�.
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simulations have been done using periodic axial boundary
conditions and using the experimentally measured density
profile. A constant temperature profile �5 eV� is used and the
potential is allowed to evolve self-consistently �potential and
flow profiles are not matched to experimentally measured
profiles�. The main experimental data set used in this work is
taken from Carter et al.34 and includes measurements of
plasma and turbulence profiles and two-dimensional correla-
tion functions. Density fluctuations in BOUT are compared
against ion saturation current Ii,sat fluctuations measured in
the experiment �making the currently unverified assumption
that temperature fluctuations are negligible�.

To be able to compare turbulence characteristics to the
measured data for the experimentally relevant plasma param-
eters, the average profiles have to be maintained close to the
experimental values during the simulation. To do so, the two
methods described in Sec. III are applied, either subtracting
the azimuthal average of the right-hand side of the density
equation, or adding a time-independent source function S�r�
to the right-hand side of Eq. �1�.

Using these two methods, a steady-state turbulence for
LAPD parameters is simulated, solving Eqs. �1�–�4� with the
average density close to the experimental profile, for a range
of ion-neutral collisionalities ��in /�ci=2�10−4 ,1�10−3 ,2
�10−3�. The estimated value for LAPD, based on neutral
density nn�5�1011 cm−3, is �in /�ci=2�10−3. The simula-
tions are performed in the radial interval 0.15�r�0.45 m
in an azimuthal segment of a cylinder of � /4 angle, assum-
ing periodicity in the azimuthal angle and parallel direction.
The grid size is 50�32�32 points for radial, azimuthal, and
parallel coordinates. In order to improve the statistics, a se-
ries of uncorrelated runs is made with slightly different ini-
tial perturbations. In the experiment, a slow evolution of the
mean density is observed on a �1–2 ms time-scale. BOUT

simulations with fixed background profile cannot capture the
slow variation of the average density because the azimuth-
ally symmetric component of density perturbation is continu-
ously removed in BOUT simulation to maintain a constant
profile. For the purposes of direct comparisons between
BOUT results and the measured data, this slow evolution is
removed from the experimental data by applying a temporal

smoothing of the signal, which cuts off all frequencies below
800 Hz. For consistency, the same smoothing is applied to
BOUT data.

A. Fluctuations: Temporal and spatial characteristics,
PDF

The analysis of BOUT results shows that the Ii,sat fluctua-
tion amplitudes in LAPD data and the simulations have simi-
lar radial location near the cathode edge �r�28 cm�, where
the background density gradient is largest, as shown in Fig.
6. The absolute values of the fluctuations are of the same
order of magnitude, with simulated amplitudes smaller by a
factor �2 than the experimental data.

The comparison of the frequency power spectrum of the
density fluctuations �n /n to the LAPD measured spectrum is
presented in Fig. 7. The spectra are integrated over the vol-
ume 0.22�r�0.28 m, using a sliding Hanning window for
averaging between the different simulation runs. Note that

FIG. 5. �Color online� Evolution of density and potential in BOUT simulation
with density source. Left: density fluctuations. Right: rms of the density
perturbations and the axisymmetric and nonaxisymmetric components of
self-generated potential �top�; average radial profiles of density and potential
�bottom� �enhanced online�. �URL: http://dx.doi.org/10.1063/1.3527987.1� FIG. 6. �Color online� Radial distribution of the average ion saturation

current fluctuations normalized to the maximum equilibrium profile value.

FIG. 7. �Color online� Frequency power spectrum of the density fluctua-
tions: LAPD measurements �a� and BOUT simulations ��b�–�f�� for �b�
�in /�ci=2�10−3, �c� �in /�ci=2�10−3 with Nz=128 azimuthal grid size,
�d� �in /�ci=1�10−3, �e� �in /�ci=2�10−4, and �f� �in /�ci=2�10−3 with
ion viscosity at Ti=0.1 eV. Experimental density profile, Te=5 eV.
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the total power in each spectrum is normalized to obtain the
best fit to the experimental data. The power spectral shape
from the BOUT simulation �for a range of �in values� is in a
relatively good agreement with the measured spectrum �Fig.
7�b�, 7�d�, and 7�e��. At higher frequencies, �10 kHz, the
simulated spectra fall off faster than the measured spectrum.
More studies are required to analyze the effect of additional
features of the physical model �temperature profile and per-
turbations, sheath boundary conditions, etc.� on the power
spectrum, as well as the numerical resolution. High frequen-
cies corresponding to smaller spatial structures are poten-
tially more affected by finite resolution effects. As a check of
numerical convergence in terms of box size, the spectrum for
�in /�ci=2�10−3 is calculated with four times the size of the
azimuthal extent of the grid and the number of azimuthal
grid points �Nz=128�. The spectrum shape is similar to the
original calculation, with a smaller grid size �Figs. 7�b� and
7�c��. These simulations were performed without the explicit
ion viscosity term in the vorticity Eq. �3�, therefore the only
viscosity is due to the numerical discretization. Inclusion of
the ion-ion viscosity term as discussed in the Appendix B
corresponding to the ion temperature Ti=0.1 eV does not
significantly change the spectrum shape. The effects of vis-
cosity in BOUT simulations are a subject of ongoing work. It
is interesting to note that both the experimental and the simu-
lation spectra exhibit an exponential power spectrum at
higher frequencies �straight line on the log-lin plot�, which is
consistent with the presence of coherent structures.42

Another important characteristic of the turbulence is the
probability distribution function �PDF� of fluctuation
amplitudes. The PDF of �n / rms��n� fluctuations from
LAPD probe data is integrated over a volume of plasma
0.22�r�0.28 m and compared with the PDF from BOUT

simulations in the same volume �Fig. 8�. There are no nor-
malizations or fit factors involved in this comparison. The
experimental and the simulated PDFs are similar, with the
average relative fluctuation 	��n /n�
 of 0.16 for the measured
data and 0.09, 0.09, and 0.08 for BOUT simulations with
�in /�ci=2�10−4, 1�10−3, and 2�10−3. The PDF for the

�in /�ci=2�10−3 case is the closest to the experimental data,
which is consistent with the estimate of the neutral density in
LAPD. Note that the distribution is mostly symmetric here
because it is integrated over a radial interval where the skew-
ness is relatively low �Fig. 9�.

Intermittent turbulence is observed in the edge plasmas
of many experimental devices. This intermittency is usually
attributed to generation and transport of coherent filaments
of plasma, “blobs” or “holes.”43 One signature of the pres-
ence of these structures is the nonzero skewness of the den-
sity fluctuation PDF. Typically, positive skewness associated
with convective transport of blobs is observed in LAPD
measurements in the region outside of the cathode edge
�r�28 cm�. Smaller negative values, associated with the
holes are usually observed inside the cathode radius. The
radial profile of the skewness of �n is shown in Fig. 9. Ex-
cept for the edge of the simulation domain which is affected
by the imposed boundary conditions, the trend of the skew-
ness profile, as well as the absolute values, is similar in BOUT

simulations and in the LAPD data.
Two-dimensional turbulent correlation functions are

measured in LAPD using two probes: a fixed reference probe
and a second probe that is moved shot-to-shot to many
��1000� spatial locations in a two-dimensional �2D� plane
perpendicular to the magnetic field. The reference probe re-
mains at a fixed position that is close enough to the moving
probe in the axial direction so that the parallel variation of
the turbulent structures can be neglected. This allows to ob-
tain the 2D spatial correlation function in the azimuthal
plane. A similar “synthetic” diagnostic to postprocess BOUT

simulation results is constructed by calculating the correla-
tions between a reference location and all other points in
each azimuthal plane. The correlation length in BOUT simu-
lation is of the same order, but larger than the measured
value �Fig. 10�.

B. Fluxes and sources versus inferred source/sink
in LAPD

An inferred particle source is required to maintain the
density profile close to the experimental values, as described

FIG. 8. �Color online� Probability distribution function of �n / rms��n� fluc-
tuation amplitude in BOUT simulations and LAPD data. PDF is volume av-
eraged in the interval 0.22�r�0.28 m.

FIG. 9. �Color online� Skewness of �n distribution in BOUT simulations and
LAPD measurements.
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in Sec. III C. In BOUT simulations, the calculated source
function S�r� that produces steady-state turbulence with
the desired density profile appears to be positive inside
r0�28 cm and negative outside �Fig. 11�. Remarkably, the
qualitative form and magnitude of the S�r� profile is consis-
tent with the assumption that within �r0 there is an ioniza-
tion source, and outside of �r0 there is a sink due to parallel
streaming to the end walls. In LAPD, the field lines inside
r�28 cm connect to the cathode that produces the primary
ionizing electron beam. The magnitude of the inferred source
is close to the estimated ionization source and parallel losses
sink for LAPD plasma, Ssource�nnne	�v
i�2�1020 m−3 /s
and Ssink�niCs /L� �5�1020 m−3 /s.

V. DISCUSSION

A. Plasma transport

One can calculate the effective diffusion coefficient by
dividing the radial flux by the gradient of the equilibrium
density,

Deff = −
�

�Ni0
. �11�

The turbulence-driven radial particle flux in BOUT simula-
tions peaks near the maximum density profile gradient and is
close to diffusive model value, with the effective diffusion
coefficient Deff�3 m2 /s on the order of Bohm value,
DBohm�8 m2 /s. The profiles of the average radial flux mea-
sured in LAPD and calculated in BOUT are shown in Fig. 12.
The simulated flux is significantly lower than the measured
flux in LAPD, but this difference is consistent with the dif-
ference in fluctuation amplitude shown in Fig. 6. It should
also be noted that the measured flux profile is valid only for
r�28 cm as the measurement of azimuthal electric field
fluctuations in LAPD is affected by fast electrons generated
by the plasma source.34

While comparisons are made here to a diffusive model
and particle transport in LAPD has been shown to be well
modeled by Bohm diffusion,35 the simulated plasma turbu-
lence has features that are usually associated with intermit-
tency, as discussed in Sec. IV A: non-Gaussian fluctuations,
as seen by nonzero standard statistical moments. The role of

coherent structures and convective transport in BOUT simula-
tions is the subject of ongoing investigation.

B. Numerical diagnostics and ŠEr‹ equation

An important part of the simulation effort is the frame-
work for various diagnostics of the numerical solution. An
obvious test of the solution is the check of the conservation
laws �particle number, momentum, etc.�. However, depend-
ing on the choice of the radial boundary conditions and the
form of the sources, the total number of particles, for ex-
ample, is not necessarily conserved during the simulation. A
more appropriate diagnostics in this case is the local check of
the balance of the terms in each of the time evolution Eqs.
�1�–�3�, at each point in space and time. As well as ensuring
that the solution is correct, calculation of this balance also
provides a useful insight into the relative importance of the
physical terms.

This test can be done directly, using the explicit form of
Eqs. �1�–�3� as they appear in the code, or indirectly, by
calculating the conservation of physical quantities not di-
rectly solved for by BOUT. For the direct tests, the balance of
the terms in BOUT equations is satisfied to the machine accu-
racy when the appropriate finite difference schemes are used
in the diagnostic module.

Tests involving equations not directly solved by BOUT

can be more subtle. An example is the equation for the
azimuthal momentum. BOUT simulations in LAPD geometry
show generation of self-consistent axisymmetric component
of the potential. The dynamics of this zonal flow component
can be derived from the vorticity equation as shown in
Appendix A,

�t	NV�
 = 	�Vr
 +
1

r
�N��

���2

2
� − �in	NV�
 − �r	�
 .

�12�

This expression is similar to the equation for the zonal flow
component of the radial electric field that can be derived

FIG. 11. �Color online� Inferred particle source required to maintain the
measured density profile.

FIG. 10. �Color online� Correlation function for Ii,sat fluctuations measured
using a moving probe.
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directly from the azimuthal projection of the ion momentum
equation,44

�t	V�
 = −
1

r2�r�r2	VrV�
� − �in	V�


+ ��r
2	V�
 +

1

r
�r	V�
 −

1

r2 	V�
� . �13�

The first term in the right-hand side of Eqs. �12� and �13� is
the turbulent Reynolds stress. If a stationary turbulent state
exists, the time-average of the Reynolds stress, which is the
driving term for the zonal flows, is balanced by the ion-
neutral collisions and the ion viscosity terms. This equation
is not derived directly from the vorticity equation, therefore
BOUT solution satisfies it only to the extent that the underly-
ing assumptions in the derivation of the vorticity Eq. �3� are
fulfilled.

Applying this diagnostic to BOUT output, it is found that
the balance is well satisfied �within �5%� for Eq. �12� �with
a small correction due to the linearization used in the inver-
sion of Eq. �4�� and Eq. �13� with a particular choice of the
finite difference scheme in the advection operators—the
fourth order central scheme. However, for the first order up-
wind scheme used in most of nonlinear simulations pre-
sented here, the balance is not sufficiently well satisfied,
which indicates that a higher numerical resolution is required
to reach convergence for this diagnostic measure.

At present, a quantitative match between the average
	Er
 in the code and in the experimental data has not been
obtained. However, at present the model does not include all
physics �e.g., sheath, biasing, temperature perturbations� that
is certainly important for setting the average radial electric
field. Improving the model by adding to it the missing phys-
ics to address matching of 	Er
 is the subject of ongoing
research.

C. Future work

A detailed verification study of linear instabilities in
LAPD using BOUT �Ref. 33� combined with a good qualita-
tive and even partially quantivative agreement between non-
linear BOUT simulations and LAPD measurements presented
here provides confidence in the relevance of these simula-

tions to LAPD. It is, however, not a fully consistent first
principles model at present and some potentially important
physics is yet to be included. Most importantly, the experi-
mentally measured temperature and flow profiles need to be
matched and an evolution equation for temperature fluctua-
tions, already implemented in BOUT, could be employed. The
addition of a temperature gradient to the simulation would
likely increase instability drive and result in a larger satu-
rated turbulent amplitude and particle flux, more consistent
with observation. Another significant improvement of the
model that remains to be implemented is the sheath boundary
condition at the end plates in the parallel direction. The axial
boundary conditions are expected to be important in the for-
mation of the radial electric field profile in LAPD, and a
more physical description might help to understand and
model the dynamics of the azimuthal flows and experimen-
tally relevant potential profiles. The role of the ion viscosity
on these flows is also a subject of ongoing work and has to
be investigated in more detail. Additionally, including sheath
boundary conditions along with temperature gradients, elec-
tron temperature fluctuations and an equation for temperature
evolution can give rise to modifications to drift instabilities
and introduce new modes, such as entropy waves45,46 and
conducting wall modes.47

Although the linear calculations indicate that electro-
magnetic effects do not significantly affect drift wave insta-
bility in LAPD, magnetic field perturbations are required for
Alfvén wave studies. Alfvén waves represent an important
part of LAPD research, and nonlinear simulations of Alfvén
waves using BOUT can contribute to the understanding of
electromagnetic turbulence in LAPD.

VI. CONCLUSIONS

A numerical 3D model of plasma turbulence is applied
to LAPD. The physics model includes equations for plasma
density, electron parallel momentum, and current continuity
for partially ionized plasma. The model is implemented in
the numerical code BOUT that is adapted for cylindrical ge-
ometry. This model has previously been successfully verified
for a range of linear instabilities in LAPD.33

Two different methods for average profile control are
applied in the simulations presented in this study. One ap-

FIG. 12. �Color online� Left: radial profiles of average ni and dni /dr. Right: radial particle flux � from the measured LAPD data and BOUT simulations.
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proach consists of suppressing the azimuthal average of the
density fluctuations by directly subtracting it from the time
evolution equation. The second method uses a source/sink
radial function that is constructed to balance steady-state ra-
dial transport flows. Both methods successfully maintain the
average density profile close to the experimental value,
which is required for comparisons with the measured turbu-
lence characteristics.

Nonlinear BOUT simulations demonstrate a self-
consistent evolution of turbulence and self-generated electric
field and zonal flows, which saturates and results in a steady
turbulent state. The simulated fluctuation amplitudes in the
steady-state are within a factor of 2 of the measured data,
with a similar radial location near the cathode edge. The
probability distribution function of the fluctuation amplitudes
is comparable to the experimental distribution. Statistical
properties of edge turbulence, such as the skewness, are of-
ten used as indication of the turbulence intermittency.7 In
tokamak edge, the skewness is positive in the SOL �i.e.,
dominated by large amplitude events�, but is sometimes
negative inside the separatrix or limiter radius �i.e., with den-
sity holes�, e.g., seen in DIII-D �Ref. 48� and NSTX.49 This
feature is similar to LAPD data and reproduced in BOUT

simulations. Despite the intermittent character of turbulence,
as indicated by non-Gaussian PDF, the turbulent particle flux
magnitude is consistent with diffusive model with diffusion
coefficient of the order of DBohm. The inferred particle
source/sink function required to maintain the simulated
steady-state density profile close to experimental value is
consistent with the estimates of ionization sources and par-
allel losses in LAPD discharge.

The spatial and temporal structures of the fluctuations
are consistent with the LAPD measurements, however the
correlation length in BOUT simulations is larger than in the
experiment. Although some elements of the physical model
still remain to be implemented �sheath parallel boundary
conditions, azimuthal flow matching, electron temperature
fluctuations, etc.�, the agreement between certain features of
the experimental data and simulations based on this rela-
tively simple model lends confidence in the applicability of
these simulations to the LAPD plasmas.
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APPENDIX A: AZIMUTHAL MOMENTUM EQUATION

The equation describing the evolution of the surface-
averaged azimuthal momentum can be derived from the vor-
ticity equation

�t� = − vE · �� − ���Nv��

+ b � �N · �vE
2/2 − �in� + i��

2 � , �A1�

where the potential vorticity is

� = �� · �N���� . �A2�

Define surface and volume averaging by

	f�r,�,z�
 =
1

2�L
�

0

2� �
0

L

fdzd� , �A3�

	f�r,�,z�
V =
1

V
�

ra

r

	f�r�,�,z�
r�dr�. �A4�

Note the identity

	��
2 f
 = ��

2 	f
 . �A5�

For LAPD geometry, the convention is Bz=−Bp, so b0=−z.
In normalized variables, vE=b0���,

Vr = − bz
1

r

��

��
=

1

r

��

��
,

�A6�

V� = bz
��

�r
= −

��

�r
.

The equation for the evolution of the azimuthal flows can be
obtained from the vorticity Eq. �A1� by volume averaging.
Applying Gauss theorem and assuming that the boundary
conditions on the internal boundary are such that all sur-
face integrals over the internal surface r=ra vanish, the fol-
lowing expression for the volume-average of the vorticity is
obtained:

	�
V =
2�L

V
	N�r�
 = −

2�L

V
	NV�
 . �A7�

The ion-ion viscosity term,

	��
2 �
V =

2�L

V
	�r�
 =

2�L

V
�r	�
 . �A8�

The advection term can be rewritten as

	vE · ��
V = 	� · ��vE� − � � · vE
V, �A9�

where in straight field the last term vanishes. Applying
the Gauss theorem, the full divergence becomes a surface
average,

	� · ��vE�
V =
2�L

V
	�Vr
 . �A10�

The fourth term in Eq. �A1� can be written as a full
divergence,

b � �N · �
vE

2

2
= � · �vE

2

2
b � �N� −

vE
2

2
� · �b � �N�

= � · ����2

2
b � �N� . �A11�

The volume integral is then transformed info surface average
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�b � �N · �
vE

2

2
�

V
=

2�L

V
����2

2
b � �N · r̂�

=
2�L

V

1

r
����2

2
��N�

= −
2�L

V

1

r
�N��

���2

2
� . �A12�

Collecting all terms, one obtains the surface-averaged azi-
muthal momentum evolution equation

�t	NV�
 = 	�Vr
 +
1

r
�N��

���2

2
� − �in	NV�
 − �r	�
 .

�A13�

APPENDIX B: ION VISCOSITY

Including the ion-ion viscosity effects results in an addi-
tional term in the vorticity Eq. �3�. Viscous force � ·�

�where � is the stress tensor vv−v2 /3Î� in the ion motion
equation induces a perpendicular drift vi�=b� �� ·�� to
the lowest order, which translates into an additional perpen-
dicular current component j�,=enb� �� ·��. To simplify
the final form of the viscous term, it is assumed that density
perturbations are small and the equilibrium gradients are
negligible compared to the perturbed quantities. Then the
extra term due to viscosity in the vorticity equation can be
written as

� · j�, = en � · �b � �� · ��� = − enb · �� � �� · ��� .

�B1�

Using Braginskii expressions for the stress tensor36 with per-
pendicular ion velocity vi�=vE=b��� to the lowest order,
it can be shown that the extra term in the vorticity Eq. �3� is
i��

2 �.
Depending on the ion magnetization, one should choose

either the magnetized or unmagnetized viscosity expression
for the coefficient i: i=�1

i =0.3nTi /�ci
2 �i for �ci�i�1 or

i=�0
i =0.96nTi�i for �ci�i
1. The estimate of the ion

magnetization parameter �ci�i for typical LAPD values
�He4, B0=400 G, ni�3�1018 m−3, Ti�1 eV� is close to
unity. The ion temperature in LAPD is not directly measured;
the estimate from the electron-ion energy exchange and
the parallel losses balance indicates that Ti is in the range
0.1–1 eV. Preliminary BOUT simulations with ion viscosity
are consistent with the experimental measurements for low
ion temperatures, Ti�0.1 eV, which corresponds to unmag-
netized ion regime.

APPENDIX C: DISCRETIZATION IN THE PARALLEL
COORDINATE

Consider the local drift mode dispersion relation for the
simplest case, without electron inertia and electromagnetic
terms, when it becomes a quadratic equation, as given in
elementary plasma textbooks,50

�� − 1�i�� + �2 = 0, �C1�

where

�� = � k�

k�

�2�ci�ce

�ei��

, �C2�

�� = k�vpe =
k�

Ln

Te0

mi�ci
, �C3�

and � is normalized to ��.
Now consider the effect of finite-difference discretiza-

tion on Eq. �C1�. For simplicity assume no radial structure so
that the radial part of the solution can be dropped. There are
just two coordinates then: the drift wave propagation direc-
tion y and the parallel direction z.

Now let us focus on the parallel discretization. Parallel
derivatives that are represented by ik� in the Fourier form
will become something different in the discretized equation,
depending on the type of discretization. For example, apply-
ing the second central difference for a single mode exp�ik�z�
one obtains

df

dz
→

exp�ik�zj+1� − exp�ik�zj−1�
2h

=
i sin�k�h�

h
. �C4�

Here h is parallel grid spacing, zj = jh.
One can notice that at large wavenumbers, k�� /h,

the finite-difference representation is very poor. In this ex-
ample, from Eq. �C1�, for �� �1 the growth rate scales
as��1 /k�

2, i.e., large k� should stabilize the modes. Con-
versely, in the discretized dispersion relation it will become
��1 / �sin�k�h��2 which would become singular at the
Nyquist wavenumber k� =� /h, which can be manifested in
unphysical behavior of such modes. The possibility of un-
physical behavior of high-k modes caused by spatial discreti-
zation, in particular the “red-black” numerical instability, is
well-known in the CFD community, and historically the
main remedy was using staggered grid.51 A more recent
popular method is discretization on collocated grids adding a
dissipative biharmonic �i.e., fourth derivative� term to sup-
press the “red-black” instability �e.g., the Rhie–Chow inter-
polation�.

Consider the effects of staggered grid for the discretized
drift mode dispersion relation. Assume that Ni, �, and � are
specified on one grid, while j� and V�e are specified on an-
other grid shifted by h /2. Then, k�

2 in the dispersion relation
�C1� can be tracked down to the derivatives

� j�

�z
→ �j�,j − j�,j−1�/h = exp�− ikh/2�

i sin�kh/2�
h/2

�C5�

and

���

�z
→ �� j+1 − � j�/h = exp�ikh/2�

i sin�kh/2�
h/2

, �C6�

which combine to produce

k�
2 → − � sin�kh/2�

h/2 �2

. �C7�

One can note that Eq. �C7� does not become zero for any
mode supported by the grid, −� /h�k�� /h, which is an
important improvement.
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Since the staggered grid approach is more cumbersome
for implementation, in particular for parallel computation, it
is desirable to stay with collocated grids, if possible. In this
example one can come up with discretization Eqs. �C5� and
�C6� on collocated grids by combining right-sided and left-
sided first order discretization. This method, which we call
“quasistaggered grid,” has been successfully applied in BOUT

to eliminate spurious modes due to parallel discretization.
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