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External biasing of the Large Plasma Device (LAPD) and its impact on plasma flows and

turbulence are explored for the first time in 3D simulations using the Global Braginskii Solver

code. Without external biasing, the LAPD plasma spontaneously rotates in the ion diamagnetic

direction. The application of a positive bias increases the plasma rotation in the simulations, which

show the emergence of a coherent Kelvin Helmholtz (KH) mode outside of the cathode edge with

poloidal mode number m ’ 6. Negative biasing reduces the rotation in the simulations, which

exhibit KH turbulence modestly weaker than but otherwise similar to unbiased simulations.

Biasing either way, but especially positively, forces the plasma potential inside the cathode edge to

a spatially constant, KH-stable profile, leading to a more quiescent core plasma than the unbiased

case. A moderate increase in plasma confinement and an associated steepening of the profiles are

seen in the biasing runs. The simulations thus show that the application of external biasing can

improve confinement while also driving a Kelvin-Helmholtz instability. Ion-neutral collisions have

only a weak effect in the biased or unbiased simulations. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4975616]

I. INTRODUCTION

Over the past decade, researchers have explored the

effects of plasma biasing and its impact on flows and turbu-

lence in the Large Plasma Device (LAPD).1 Without external

biasing, the LAPD plasma spontaneously rotates in the ion

diamagnetic direction, expected theoretically and reproduced

by our simulations as the plasma charges slightly positive to

counterbalance the larger electron (than ion) thermal stream-

ing particle losses along the magnetic field to the end walls.

This creates a positive radial electric field and an associated

E�B drift in the ion diamagnetic direction. This unbiased

spontaneous rotation of the LAPD plasma can be modified

through biasing to increase the rotation, nearly null it, or

reverse it completely.2 Numerous studies have shown biasing

to be a mechanism for confinement as well as a means of

controlling azimuthal sheared flow, which subsequently

modifies the turbulent dynamics.2–8

Previous simulations of LAPD9–14 have either focused

on the unbiased regime or in the case of Friedman et al.13

have modeled null-flow conditions that are relevant mainly

to experiments that reduce or nearly null the intrinsic rota-

tion through careful biasing.8

Building upon the study of the unbiased regime of

LAPD by Fisher et al.,14 we explore external biasing through

boundary conditions that partially model the biasing configu-

ration in LAPD. Two regimes are explored: positive bias that

increases the intrinsic rotation in the ion-diamagnetic direc-

tion and negative bias that decreases the rotation or some-

times reverses it.

Early studies3,5,6 biased the side walls of the vacuum

vessel relative to the plasma source. Later work by Zhou

et al.7 used a copper obstacle in the plasma to drive sheared

azimuthal flow. Of greatest relevance to this work, Schaffner

et al.2,8 improved biasing control with an iris-like limiter at

the cathode end.

Our numerical model employs a simple limiter shape

near the cathode-anode source end of the simulation domain

that aims to partially model the experiments of Schaffner

et al.,8 in which an annular limiter near the cathode end of

LAPD is biased with respect to the core plasma and anode.

This limiter is encompassed by a second electrically isolated

biasable annulus that terminates radially at the side walls and

can be separately biased during experiments or left to float.

For this study, we simplify this arrangement and consider the

application of just a single non-zero wall bias within a circu-

lar zone encompassing the cathode with the chamber walls

and elsewhere held at ground. This study therefore does not

capture the complete bias dynamics in the experiments, in

particular, the flows at the far edge of the LAPD generated

when the various annular and wall potentials differ. These

differences from the study by Schaffner et al.8 can lead, at

the least, to a shift in rotational reference frame.

Since the dilation of the limiter in the experiment deter-

mines the source front of electrons from the cathode, we

choose the limiter bias profile to be the same as the plasma

source profile in the simulations. We show a diagram of the

biasing setup for both the LAPD and Global Braginskii

Solver code (GBS) in Figure 1.

II. BIASING SETUP

The LAPD creates a linear plasma approximately 17 m

in length and 30 cm in radius with an axially directed mag-

netic field. At one end is a barium-oxide cathode that ther-

mionically emits electrons that are subsequently accelerated

into the plasma chamber by a biasable anode mesh. At the

far-end of the device, the plasma terminates on an end mesh

that can be biased or left to float depending on the experi-

ment. Under normal unbiased operating conditions, the

plasma rotates in the ion-diamagnetic direction. We have
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proposed that this unforced rotation is due to the mechanism

mentioned earlier.14

Our simulations use a modified version of the 3D Global

Braginskii Solver code (GBS), which we previously used to

study turbulence and transport in the unbiased regime of

LAPD.9,14 Assuming Ti � Te, the code evolves a set of five

electrostatic two-fluid drift-reduced Braginskii equations15
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where n is the plasma density, / is the electrostatic potential

evolved through the vorticity x ¼ r2
?/, Te is the electron

temperature, Vke and Vki are the parallel electron and ion

velocities, pe¼ nTe is the electron scalar pressure, df=dt
¼ @f=@t� ðc=BÞ½/; f � is the total time derivative with

Poisson bracket ½A;B� ¼ @xA@yB� @yA@xB; jk ¼ enðVki �
VkeÞ is the current density, rk is the parallel electrical con-

ductivity, Xci ¼ eB=mic is the ion cyclotron frequency, �in is

the ion-neutral collision rate, and g0i and g0e are the parallel

ion and electron viscosities.

Sources for the density, temperature, and vorticity are

represented as Sn, ST, and Sx and are described in further

detail by Fisher et al.14 The vorticity source represents the

injection of electrons into the plasma by the anode. The

vorticity equation represents the electric current continuity

equation r �~jtot ¼ 0 and thus this injection must be included

there. In unbiased and positively biased runs, this source has

only a minor effect, while at negative bias the flows can

become so weak that the vorticity source has a seemingly

significant impact on the potential.

Eqs. (1)–(5) are solved on a field-aligned Cartesian grid

parallel to z using a finite difference method with fourth-order

Runge-Kutta time stepping and small numerical diffusion

terms Dk and D. The grid size is nx ¼ ny ¼ 256, nz¼ 64. The

GBS normalization is based on the reference parameters for a

He plasma: Te0 ¼ 6 eV; n0 ¼ 2� 1012cm�3; Xci ¼ eB=mic
� 150 kHz, cs0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te0=mi

p
� 1:2� 106 cm/s, and qs0

¼ cs0=Xci � 1:25 cm.

The side walls in the simulations perpendicular to the

magnetic field span �L=2 to L=2 where L ¼ 100qs0 is the

domain width. This width is somewhat larger than the actual

LAPD diameter so that essentially all the plasma is lost in the

parallel direction before reaching the side walls of the simula-

tions. The parallel domain spans �Lz=2 to Lz=2 where Lz

¼ 36R and is normalized to the LAPD radius R¼ 0.5 m. The

cathode (sourced) end is at negative z. Perpendicular scales

are normalized to the reference ion-sound gyroradius qs0 and

parallel scales to the machine radius R. As in our numerical

simulations of LAPD in the unbiased regime,14 we use an ion

neutral collision rate �in=xci ¼ 1� 10�3 which is consistent

with a neutral density of nn � 1011cm�3.5,11

Bohm sheath boundary conditions are applied at the

front and end walls along the magnetic field

Vki ¼ 6cs; (6)

Vke ¼ 6cs exp ð K� ef/� /wallg=Te�Þ;½ (7)

where cs is the ion sound speed, K ¼ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=ð2pmeÞ

p
’ 3 is

the sheath factor, / is the plasma potential, and /wall is now

included as a biasing profile applied to one or both of the

end-walls. An inner radial region of the front (cathode end)

wall is biased relative to the side walls using

/wall ¼ /biasf1� tanh ðr � rlimÞ=Llim�g;½ (8)

where /bias is the desired potential difference between the

limiter and the plasma and the limiter radius rlim and profile

scale length Llim models the plasma source profiles. The far

wall opposite to the cathode (positive z) can be grounded to

mimic the target LAPD configuration or biased the same

way as the front wall, allowing us to explore the role of axial

variation.

The wall bias /wall enters the simulations through the

parallel sheath boundary conditions alone. Its biggest impact

on the plasma potential occurs through the @zjk term in the

vorticity equation and, in particular, the tendency of the sim-

ulations to seek a quasi-equilibrium state in which @zjk is

small, driving Vke ! Vki. In the double wall biasing simula-

tions discussed later in which /wall is the same at both ends

along z, the axial variation of / is weak, and this condition

leads to approximately / ’ /wall þ KTe=e (the residual

terms in the vorticity equations such as the vorticity source

and the Reynolds stress can be incorporated into a

FIG. 1. Biasing schematics of LAPD and GBS. Reproduced with permission

from Schaffner et al., Phys. Plasmas 20(5), 055907 (2013). Copyright 2013

AIP Publishing.
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redefinition K! K0 discussed below). In the unbiased case

that /wall ¼ 0 on both ends, this reduces to / ’ KTe=e, con-

sistent with the spontaneous E� B rotation of the plasma in

the ion diamagnetic direction (in the case of the ion diamag-

netic drift er/ ¼ KrTe ! ð1=nÞrpi). In the single wall

biasing simulations that are relevant to LAPD in which /wall

is nontrivial on the cathode end while /wall ¼ 0 at the oppo-

site end, the relationship of / to the applied one-wall bias is

not so clear. We show later that such a quasi-2D estimate

applies very roughly only in the positively biased simula-

tions, in which the electrons preferentially stream into the

positively biased cathode end rather than the opposite,

grounded wall, off-setting both the ion outflows and the

inward injection of electrons represented by the vorticity

source.

We present 3D GBS simulations of the LAPD for the

unbiased baseline configuration and the negatively and posi-

tively biased one-wall and two-wall cases. Biasing both

walls, though not directly relevant to LAPD, minimizes axial

potential variation and establishes contact with the 2D limit,

simulations of which we also present. For single- and

double-wall positive biasing runs, the wall potential is

ramped up to /bias ¼ 24 V, which we represent in GBS

normalized units as /bias ¼ þ4, where / ¼ e/phys=Te0 is the

normalized GBS plasma potential and Te0 ¼ 6 eV is the ref-

erence temperature. A negative wall bias may also be applied

to oppose the unbiased flow. For single- and double-wall

negative biasing runs, we choose the negative wall bias

/bias ¼ �18 V, corresponding to normalized /bias ¼ �3.

Typical LAPD discharges pulse the plasma on the order of

1 Hz with each pulse lasting about 10 ms and biasing occur-

ring a few milliseconds into the run. This is modeled in the

simulations by introducing biasing about 1.5 ms after the

plasma becomes turbulent and smoothly ramping the bias

from zero to the desired value over a few hundred microsec-

onds, comparable with voltage rise times in LAPD.

Figures 2 and 3 show a four-point radial average of the

density versus time at various locations in the simulation

domain for the positive and negative biasing simulations. For

both biasing regimes, fluctuations reach the radial location of

the LAPD machine edge (smaller than the simulation edge)

in the simulation at 0.5 m about 2 ms into the run (shown for

instance in Figure 2(c)). While it is difficult to discern

changes in the plasma fluctuations in the negative case shown

in Fig. 3 from the pre-biased fluctuations (indicative of the

similarity of these cases discussed later), Fig. 2 shows a

strongly increased fluctuation frequency from pre-biased val-

ues. As we will explain, the application of biasing to only a

single end (rather than both) has a potentially much larger

impact on the plasma potential in the positively biased case.

When axial variation is sufficiently slow and finite kk
modes are unimportant, the Braginskii equations can be inte-

grated over z to yield a set of approximate 2D fluid equa-

tions9 we simulate later

dn

dt
¼ �r

nCs

R
exp K� eD/=Teð Þ þ Sn; r ¼ 1:5

R
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; (9)

dr2/
dt
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R
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where D/ ¼ /� /wall, Lz is the axial length of the plasma,

and the factor 1.5 is an axial sheath drop rate from the 3D

runs that approximates the density drop leading into the

FIG. 2. Midplane density values aver-

aged at four radial points as a function

of time for /bias ¼ þ4 both with (dot-

ted line) and without (solid line) ion-

neutral collisions, �in. (a) at the center

of the simulation; (b) at the limiter/

cathode edge; (c) at the location of the

machine edge in LAPD; and (d) near

the boundary of the GBS radial

domain.
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sheath edge. Eqs. (9)–(11) are evolved using a 2D version of

GBS with the same reference parameters and perpendicular

computational domain as the 3D runs. Following Fisher

et al.14 the time-averaged potential can then be estimated in

quasi-2D configurations through the modified sheath param-

eter K0 and the equilibrium electron temperature as well as

the corresponding time-averaged local sound speed

h/i ’ /wall þ K0hTei (12)

with

K0 ¼ K� lnðGÞ; (13)

G ¼ 1þ Lz

fce þ ffeð Þ
1

hCsi
Sx þ hDx xð Þi
�

� R

qs0

h d/; dx½ �i þ �inhxið Þ
�
: (14)

Here, K ’ 3 is the Bohm sheath parameter, fce and ffe are the

axial density sheath drop estimates at the cathode edge and

far edge, Cs is the local sound speed, and DxðxÞ is a second

order diffusion operator, which makes a negligible contribu-

tion here.

All time-averaged values (unless otherwise stated) are

computed over a time window of 2 ms in the quasi-steady

state phase. This window is similar to that used with LAPD

biasing data and appropriately allows for multiple eddy-

turnover times. Moreover, it is larger by at least a factor of 2

than the autocorrelation times sac, approximated here by

comparing various time-averaged windows. (The autocorre-

lation time is a measure of the convergence rate of an ergo-

dic data set to its mean and is non-trivial to calculate from

data.16) The density sheath drop rates are a measure of the

average drop in density from the maximum to the sheath

edge. There is radial variation in these terms, but this has lit-

tle effect on the shape of the estimated potential. Estimates

of fce þ ffe are on the order of 1.8, comparable to the value 3/

2 used in previous work.9

It has been suggested5 that the plasma rotation in LAPD

is due to the J�B torque from ion-neutral collisions entering

though the Pedersen conductivity. In our simulations, �in

enters through damping terms /�in on the right sides of the

vorticity equations; in our simulations they have only a small

impact, such as in the time-averaged potential plots of Fig. 4.

The nonlinear Reynolds stress has also been proposed as a

possible mechanism for plasma rotation.17 The Reynolds

stress, shown in Fig. 5, is a nonlinear term that convects

momentum in the vorticity equation. In our analysis it can be

incorporated into K0 (the h½d/; dx�i term) and also has a

small effect on the plasma potential in all cases.

III. BIASING RESULTS

The quasi-2D assumption is at least roughly applicable in

all but the single wall negatively biased case, in which the

axial variation of the potential is nontrivial. Aside from that

case, the E� B rotation of the simulations is approximately

described by / ¼ /wall þ K0Te. Figs. 6 and 7 show the time-

averaged electric potential h/i, the estimate given by Eq.

(13), and the applied wall biases. The estimated potentials in

Figs. 6(b) and 7(b) show good agreement in the case that both

the front and far walls are equally biased, and rough agree-

ment with the positively biased single wall simulation in Fig.

7(a). But the estimate / ¼ /wall þ K0Te clearly fails in the

negatively biased single wall simulation shown in Fig. 6(a).

The potential in this case, shown in Fig. 8, matches / ’ K0Te

at the far (positive z) grounded wall where /wall ¼ 0 and

FIG. 3. Midplane density values aver-

aged at four radial points as a function

of time for /bias ¼ �3 both with (dot-

ted line) and without (solid line) ion-

neutral collisions, �in. (a) at the center

of the simulation; (b) at the limiter/

cathode edge; (c) at the location of the

LAPD machine edge; and (d) near the

boundary of the GBS radial domain.
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drops axially to values near zero at the negatively biased cath-

ode end, well short of /wall ¼ �3 there. The potential shows

strong perpendicular variation near the cathode edge, where

the biasing is attempting with little success to reverse the flow

in the electron diamagnetic direction.

Given the boundary condition 7, the application of a

front wall bias substantially below �KTe=e leads to Vke ’ 0

(the electrons being fully repulsed by a negatively biased

wall), after which further reduction of /wall has no effect on

the plasma. All of the electrons preferentially flow along the

field into the far-end, grounded wall (the parallel flows are

shown later). In other words, the application of a negative

bias to a single wall substantially below �KTe=e cannot, in

the presence of a grounded far-end wall, substantially lower

e/phys=Te below zero.

In contrast, the positively biased plasma potential shown

in Fig. 9 is set mainly by the front wall through the relation

/ ¼ /wall þ K0Te and remains approximately at this level

FIG. 4. Midplane potential profiles

comparing biasing runs (left and right

columns) to the unbiased low-flow

regime (center column). Total potential

profiles are shown in the top row,

while time-averaged equilibrium quan-

tities are shown in the bottom row.

FIG. 5. Time-averaged Reynolds stress

from the nonlinear convective term in

the vorticity equation, h½d/; dx�i both

with and without ion-neutral collisions,

�in. Units are GBS normalized.
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along the entire z domain. The electrons now flow predomi-

nantly into the positively biased wall compared to the

grounded far wall. The weak axial variation of the potential

in this case is required by the parallel electron momentum

equation (3), which would otherwise exhibit an unacceptably

large parallel electric field (Ez ¼ �@z/) that would drive

electron flows inconsistent with the Vke boundary conditions.

The parallel gradients @zn, @zTe are similarly limited. Thus,

the positively biased one wall simulation is roughly quasi-

2D.

Focusing now on the single-wall biasing runs, Figs.

10–14 show midplane cross-sectional snapshots of the den-

sity, temperature, potential, and parallel electron and ion

velocities for each biasing regime. The fluctuations in the

plots are driven (as we will demonstrate) by kk ¼ 0 Kelvin-

Helmholtz (KH) instabilities. As expected, the parallel elec-

tron flow is positively skewed at negative bias and negatively

skewed at positive bias. The structure of the KH-induced

fluctuations in the unbiased and single wall negatively biased

cases is roughly similar, which reflects the similarity of the

potential in the negatively biased run (Fig. 8) to a moderately

weakened, negatively shifted and axially varying version of

the unbiased plasma potential (Fig. 4(e)). The potential in

the positively biased case is very flat inside the cathode

edge, mostly suppressing rotation and KH activity there.

In such cases where the plasma potential assumes an

approximate top-hat shape, the associated poloidal E�B
flow profile VEh ¼ �ðc=BÞ@r/phys represents a radially

sheared jet of plasma with fixed D/ ¼
Ð
@r/dr / VEhd

where D/ is the applied bias voltage and VEh and d are the

average velocity and radial width of the jet. The width d in

all our simulations is significantly larger than that of the

applied bias function /wall and is governed by the KH-driven

transport across the sheared layer, with weaker transport

FIG. 6. Comparison of time-averaged potential profiles between (a) single

and (b) double wall biasing with /bias ¼ �3. The expected potential from

the modified sheath factor, K0, is shown in each instance along side the

biased wall potential profile.

FIG. 7. Comparison of time-averaged potential profiles between (a) single

and (b) double wall biasing with /bias ¼ þ4. The expected potential from

the modified sheath factor, K0, is shown in each instance along side the

biased wall potential profile.

FIG. 8. Midplane electric potential as

a function of axial position in the case

where /wall ¼ �3. Projected contour

lines show the drop in plasma potential

in response to end-wall sheath bound-

ary conditions.
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leading to narrower layers, steeper plasma profiles, and faster

peak poloidal E�B velocities.

Radial profiles of the density and corresponding time

averages are shown in Figs. 15 and 16. Both biased average

density profiles show moderate steepening and improved

central confinement. The plateaus in the positively biased

average density reflect the saturated quasi-coherent mode

with poloidal mode number m ’ 6 visible as an inner and

outer hexagonal ring of vortices in Figs. 10–12. The poloi-

dal E�B velocity profile associated with the positively

biased potential of Fig. 9 is approximately zero in the

regions inside the cathode edge and well outside, separated

by a uni-directional jet in the ion diamagnetic direction

(clockwise here). As such, it corresponds roughly to inner

negative and outer positive vortex sheets, which nonlinearly

produce the vortex rings. The central flatness of the posi-

tively biased average density in Fig. 15(f), indicative of

good particle confinement, shows that the saturated KH

mode, while presumably an effective means of vorticity

transport and dissipation, produces relatively weak particle

transport. This illustrates a significant finding of this work:

increasing the bias, while destabilizing KH modes, leads to

overall better plasma confinement in the simulations.

Turning to the parallel structure, cuts along z parallel to

the magnetic field are shown in Figs. 17 and 18. To highlight

the fluctuations, corresponding plots of the temperature, den-

sity, and potential with the time-averages subtracted off are

shown in Figs. 19 and 20. The latter illustrate the predomi-

nantly kk ¼ 0 nature of the fluctuations, consistent with KH

modes and inconsistent with driftwaves, which require finite

kk to be unstable. The parallel flow of electrons in the nega-

tively biased case, as expected, is near zero at the (strongly

repulsive) cathode end, and positive at the far, grounded end.

This net outflow counterbalances the ion outflow and the

input of electrons by the anode, entering the model through

the vorticity source.

Figure 21 shows midplane cuts of the density fluctua-

tions and spectral power density over a window of 2 ms in

the quasi-equilibrium region of both the unbiased and biased

runs. The fluctuation profile in the negatively biased simula-

tion is about �15% weaker than the unbiased run and similar

in shape, consistent with the rough similarity of the potential

profiles. The positively biased profile shows a strong peak at

the cathode edge (marked by vertical dotted lines) due to the

quasi-coherent mode, with reduced fluctuations relative to

the unbiased case both in the core and a few centimeters

FIG. 9. Midplane electric potential as

a function of axial position in the case

where /wall ¼ þ4. Projected contour

lines show the drop in plasma potential

in response to end-wall sheath bound-

ary conditions.

FIG. 10. Comparison of midplane density profiles between biasing runs.

Colorbar uses GBS normalized units.

FIG. 11. Comparison of midplane temperature profiles between biasing

runs. Colorbar uses GBS normalized units.
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outside the cathode and beyond. The spectral analysis is con-

sistent with the reduced, inward-shifted peak in the fluctua-

tions at negative bias, and at positive bias shows a strong,

narrow signal at the rotation frequency of the quasi-coherent

mode. An overall steepening and narrowing of the profiles is

FIG. 12. Comparison of midplane

potential profiles between biasing runs.

Colorbar uses GBS normalized units.

FIG. 13. Comparison of midplane parallel electron velocity profiles between

biasing runs. Colorbar uses GBS normalized units.

FIG. 14. Comparison of midplane parallel ion velocity profiles between

biasing runs. Colorbar uses GBS normalized units.

FIG. 15. Midplane density profiles

comparing biasing runs (left and right

columns) to the unbiased low-flow

regime (center column). Total density

profiles are shown in the top row,

while time-averaged equilibrium quan-

tities are shown in the bottom row.

FIG. 16. Time averaged radial plasma density for various single limiter wall

biasing runs.
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FIG. 17. Midplane on-axis profiles of

the density, temperature, potential,

vorticity, and parallel electron and ion

velocities for /bias ¼ �3.

FIG. 18. Midplane on-axis profiles of

the density, temperature, potential,

vorticity, and parallel electron and ion

velocities for /bias ¼ þ4.
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also seen, particularly in the positive case, indicative of the

radial narrowing of unstable activity in the biased runs.

Fig. 22 shows the 2D cross-field correlation function of

the density fluctuations referenced to a point near the cathode

edge. Simulations show radial correlation lengths of about

6 cm in the negatively biased case and 5 cm in the positively

biased case, both similar to the unbiased simulation. These are

comparable to the profile scale lengths as one would expect

for KH modes, and substantially larger (by about a factor of

five) than the characteristic driftwave scale k?qs � 1. The azi-

muthal correlation lengths in the biased runs, on the other

hand, are significantly elongated, consistent with a poloidal

stretching of unstable mode structure by the imposed E�B
shear near the cathode edge.

Fig. 23 shows the radial density flux in the three cases.

The bias reduces the fluxes at radii several centimeters inside

the cathode edge and narrows the radial zone of transport. In

the positively biased case, it is noteworthy that, despite a

large increase the E�B shear—something one would expect

to further destabilize KH modes—the density flux at its high-

est is no larger than that in the unbiased run, and radially nar-

rower. Again the conclusion is that increased E�B shear

can reduce, or at least not substantially enhance, the transport

of plasma, even though it may locally intensify KH activity.

FIG. 19. Midplane axial fluctuation profiles of the density, temperature, and

potential for /bias ¼ �3.

FIG. 20. Midplane axial fluctuation profiles of the density, temperature, and

potential for /bias ¼ þ4.

FIG. 21. Radial midplane cuts of den-

sity fluctuations and corresponding

spectral power density taken over

2 ms. Vertical dotted lines mark the

edge of the cathode and dotted lines in

the top row mirror the center unbiased

case for comparison.
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Or put another way, KH modes are relatively ineffective at

transporting plasma across an imposed layer of E�B shear.

To test whether KH modes are the main driver of fluctu-

ations in the biased runs, Figure 24 shows the steady-state

phase of 3D biased simulations in which KH modes have

been eliminated by poloidally averaging the nonlinear con-

vective term ½/;x� on the right side of the vorticity equation.

No unstable activity arises at all in the positively biased

case, while the negatively biased run—perhaps due to its

weaker E�B shear—exhibits small-scale driftwave instabil-

ity. The steepness of the density profile in the negative case

is indicative of weak radial transport by these finite-kk
modes.

Double-wall biasing runs along with 2D simulations are

also instructive in exploring fluctuation dynamics. Figs. 25

and 26 show midplane cuts of the density, temperature, and

potential in 3D simulations that bias both ends equally, the

first positively with /wall ¼ þ4 and the second negatively

with /wall ¼ �3. Figs. 27 and 28 show corresponding simu-

lations of the 2D model given by Eqs. (9)–(11). The purpose

of these simulations in the positive case is to test the role of

the axial variation and finite kk modes in the single-wall pos-

itively biased run, visible, for example, in Fig. 9. The pur-

pose in the negatively biased case is different: as shown by

Fig. 6, for the reasons explained earlier, the plasma potential

in the single and double wall biased simulations is strongly

different, the latter achieving a full reversal of the flow in the

electron diamagnetic direction. This case is nevertheless of

interest as a further exploration of KH driven transport in a

strongly driven system, this time with a narrow sheared layer

in the electron diamagnetic direction. Since our model equa-

tions and boundary conditions are not invariant under the

transformation /! �/, it is a priori unclear how the nega-

tively and positively biased systems will compare.

The comparison of the single wall negatively biased

results shown in Figs. 10–12 to the corresponding 3D double

wall biased run in Fig. 25 and its 2D analogue in Fig. 27

shows that coherent KH modes with m � 5� 6 emerge in all

three cases. Further, the steepness of the density and temper-

ature profiles across the E�B sheared layer again suggests

that despite the presence of KH activity, E�B shear remains

an effective means of plasma confinement. Based on the lin-

ear theory, one would expect the most unstable poloidal

mode number m to be proportional to @rVEh / D/=d2.

Figure 29 compares the time-averaged radial potential pro-

files for /wall ¼ þ4 in the single limiter biasing runs, the

double wall biasing runs, and the 2D runs. Following, for

example, the calculations of Rogers and Dorland,18 we then

fit the profiles to a hyperbolic tangent profile

/ xð Þ ¼ VE0d tanh
x

d

� �
; (15)

which has its most unstable linear mode for

khd ¼ 0:9; (16)

where

kh ¼ expðimhÞ ¼ expðikhrhÞ: (17)

The m-value for the fastest growing linear KH mode is

therefore

mmax ¼ khrmax ¼ 0:9
rmax

d
; (18)

where rmax is the radius at which the steepest gradient of /
occurs (x¼ 0) according to the potential profile in Eq. (15).

Using the fits of the equilibrium potential profiles shown in

Figure 29 the fastest growing linear KH mode for the single

wall limiter biasing with /wall ¼ þ4 is m � 5. The double

wall bias and the 2D model both give a fastest growing linear

mode of m � 4. The modes actually seen in the simulations

are an m � 6 mode in the single limiter biasing runs and an

FIG. 22. Cross-correlation map of midplane density fluctuations. The data

are correlated with a reference point near the cathode edge. A solid line

marks the correlation at 0.5 below the maximum value to give a correlation

length.

FIG. 23. Radial particle flux as a function of radius. Dashed vertical line

marks the edge of the cathode.

FIG. 24. Midplane density profiles in runs where shear-driven KH turbu-

lence has been suppressed through poloidally averaging the nonlinear con-

vective term, ½/;x�, in the vorticity equation.
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m � 5 mode in both the 2D and double biasing runs. It is of

course uncertain that the dominant linear and nonlinear modes

should coincide. But one possible reason for the differences is

that the sheath terms are stabilizing to KH, especially at low

k?. In the analytically tractable limit of a vortex sheet

@r/ / VE0Hðr � rmaxÞ one obtains at sufficiently large k?:

c ¼ k?VE0 �
r

4k2
?q

2
s

cs

R
; (19)

where r ¼ 1:5R=Lz ’ 0:04 enters the calculation through the

sheath terms in the 2D model discussed earlier. The sheath

terms thus become strongly stabilizing at lower k? and may

FIG. 25. Midplane plasma profiles of

the density, temperature, and potential

under front and back wall positive

biasing with /wall ¼ þ4. Colorbar val-

ues are in GBS normalized units.

FIG. 26. Midplane plasma profiles of

the density, temperature, and potential

under front and back wall negative

biasing with /wall ¼ �3. Colorbar val-

ues are in GBS normalized units.

FIG. 27. Plasma density, temperature,

and potential profiles for 2D biasing

run with /wall ¼ þ4. Colorbar values

are in GBS normalized units.

FIG. 28. Plasma density, temperature, and potential profiles for 2D biasing

run with /wall ¼ �3. Colorbar values are in GBS normalized units.
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push the most unstable mode to higher values than those cal-

culated in Ref. 18.

The 3D double wall negatively biased run in Fig. 26 and

its 2D analogue in Fig. 28 show similar but less coherent sat-

urated KH activity, seemingly a mixture of m ¼ 661. A

notable feature is the steepness of the profiles, again sugges-

ting the relative inefficacy of the saturated KH modes to pro-

duce plasma transport across the imposed E�B sheared

layer.

As a final point, we examine the cross-phase of dn and

dEh for the single-wall biasing case, which has been of

importance in some previous LAPD turbulence work.6

Spectral analysis of the density fluctuations and poloidal

field fluctuations follows the polychromatic spectral techni-

ques outlined by Powers.19 The cross-power spectrum can

then be defined as

PdndEhðxÞ ¼ F�dnðxÞFdEhðxÞ; (20)

where F is the Fourier transform of the signal fluctuations,

and the asterisk denotes a complex conjugation of the signal.

The co-spectrum and quad-spectrum can then be extracted,

respectively, as

PdndEhðxÞ ¼ CdndEhðxÞ þ iQdndEhðxÞ; (21)

where i denotes the complex imaginary unit. As in an

Argand diagram, the phase of the cross-power spectrum can

be calculated as

hdndEh xð Þ ¼ arctan
QdndEh

CdndEh

� �
; (22)

where hdndEhðxÞ is often referred to as the cross-phase

spectrum.

Cross-phase maps for the biased runs are shown in Figs.

30 and 31 as a function of both spectral power density and

machine radius. The cross-phase is represented as the cosine

of the angle so that a value of þ1 corresponds to the fluctua-

tions being perfectly in phase, while a value of �1 means

they are perfectly out of phase. The cross-phase dynamics

for the positively biased runs just outside of the cathode edge

shows a streak of frequencies in which the density and poloi-

dal electric field fluctuations are in phase. However, while

this differs from that of the negatively biased case in appear-

ance, the relative spectral power of the fluctuations at those

radii is negligible for the frequencies seen. The cross-phase

therefore seems, in agreement with Schaffner et al.,8 unsug-

gestive in our simulations.

IV. CONCLUSIONS

We present biasing simulations of the Large Plasma

Device (LAPD) using a global, three-dimensional, two-fluid

model that applies Bohm sheath boundary conditions at the

two end walls perpendicular to the magnetic field and source

terms in the density, temperature, and vorticity equations

that model the ionization of the LAPD plasma through injec-

tion at one end of electrons by the cathode-anode. The exter-

nal biasing is applied in the LAPD discharges we model

through an annular ring just outside the cathode edge that

can be biased relative to both the anode and the chamber

walls. We simplify this arrangement in the simulations by

applying just a single top-hat shaped bias voltage spanning

the circular cathode-anode region relative to assumed

grounded conditions elsewhere. The applied bias in the simu-

lations can produce a radially sheared jet of plasma with

FIG. 29. Comparison of time-averaged /wall ¼ þ4 midplane potential pro-

files (top) along with corresponding gradient profiles to mark positions of

minimum gradient scale lengths (bottom).

FIG. 30. Cross phase map of negative bias. Vertical dotted line represents

the limiter/cathode edge.

FIG. 31. Cross phase map of positive bias. Vertical dotted line represents

the limiter/cathode edge.

022303-13 D. M. Fisher and B. N. Rogers Phys. Plasmas 24, 022303 (2017)

 05 August 2025 18:20:16



given D/ / VEhd where D/ is the bias voltage and VEh and

d are the average velocity and radial width of the jet. The

width d is governed in the simulations of all biasing regimes

by Kelvin-Helmholtz (KH) driven transport across the

sheared layer, with weaker transport leading to narrower

layers and larger VEh. The radial transport of plasma by KH

modes in the simulations is weaker than one might expect, in

the sense that an increase in the applied voltage does not

lead to a correspondingly significant increase in the transport

and d, which instead approximately remain the same or

decrease overall.

In our numerical experiments, the application of positive

biasing, which reinforces the rotation of the unbiased plasma

in the ion diamagnetic direction, leads to stronger E�B
flows and a quasi-coherent KH mode with a poloidal mode

number m ’ 6, while producing comparable or somewhat

reduced plasma transport across the sheared flow layer rela-

tive to the unbiased case. On the other hand, the simulations

show that the application of negative biasing to the anode

end wall alone, with the opposite wall grounded, fails to sig-

nificantly reverse the flow. This is due to the inability of one-

wall negative biasing below roughly �3Te=e to significantly

impact the plasma potential in the presence of a grounded

far-end wall. This can be overcome in the simulations by

biasing both end walls negatively. This produces a strong

E�B flow layer in the electron diamagnetic direction, satu-

rated KH activity, and steeper profiles, again suggesting that

the rotating, saturated KH vortical structures caused by a

strongly imposed bias are a relatively ineffective means of

plasma transport.
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