Publications

2023

Haiping Zhang, Jessica Pilgram, Carmen Constantin, Lucas Rovige, Peter Heuer, Sofiya Ghazaryan, Marietta Kaloyan, Rober Dorst, Derek Schaeffer, and Christoph Niemann; “Two-Dimensional Thomson Scattering in Laser-Produced Plasmas,” Instruments, 7, 25 (2023); https://doi.org/10.3390/instruments7030025

R. Anirudh et al. "2022 Review of Data-Driven Plasma Science," IEEE Transactions on Plasma Science, vol. 51, no. 7, pp. 1750-1838, July 2023; https://doi.org/10.1109/TPS.2023.3268170

Yuchen Qian, Walter Gekelman, Patrick Pribyl, Tom Sketchley, Shreekrishna Tripathi, Zoltan Lucky, Marvin Drandell, Stephen Vincena, Thomas Look, Phil Travis, Troy Carter, Gary Wan, Mattia Cattelan, Graeme Sabiston, Angelica Ottaviano, and Richard Wirz, “Design of the Lanthanum Hexaboride based plasma source for the Large Plasma Device at UCLA,” Rev Sci Instrum., 94, 085104 (2023); https://doi.org/10.1063/5.0152216

S. W. Tang, W. Gekelman, and R. D. Sydora, "Experimental observation of a field-aligned ion beam produced by magnetic reconnection of two flux ropes," Physics of Plasmas, 1 August 2023; 30 (8): 082104; https://doi.org/10.1063/5.0138350

2022

Marietta Kaloyan, Sofiya Ghazaryan, Shreekrishna P. Tripathi, Walter Gekelman, Mychal J. Valle, Byonghoon Seo, and Christoph Niemann, "First Results from the Thomson Scattering Diagnostic on the Large Plasma Device,"Instruments, 6, 17 (2022); https://doi.org/10.3390/instruments6020017

S. Ghazaryan, M. Kaloyan, W. Gekelman, Z. Lucky, S. Vincena, S. K. P. Tripathi, P. Pribyl, and C. Niemann, Thomson scattering on the large plasma device,Rev. Sci. Instrum. 93, 083514 (2022); https://doi.org/10.1063/5.0099172

Snezhana I. Abarzhi and Walter Gekelman, Preface: Non-equilibrium transport, interfaces, and mixing in plasmas,Physics of Plasmas 29, 032103 (2022); https://doi.org/10.1063/5.0088600

R. S. Dorst, D. B. Schaeffer, A. Le, J. J. Pilgram, C. G. Constantin, S. Vincena, S. K. P. Tripathi, D. Winske, D. Larson, M. Cowee, and C. Niemann, High repetition rate mapping of the interaction between a laser plasma and magnetized background plasma via laser induced fluorescence,Phys. Plasmas 29, 082113, pp 1-11, (2022); https://doi.org/10.1063/5.0097748

B. Van Compernolle, M. J. Poulos, and G. J. Morales (2022). Sudden collapse of a pressure profile generated by off-axis heating in a linear magnetized plasma. Physics of Plasmas. 29 (4), 042104. https://doi.org/10.1063/5.0082247

Conor Perks, Saskia Mordijck, Troy Carter, Bart Van Compernolle, Stephen Vincena, Giovanni Rossi and David Schaffner (2022). Impact of the electron density and temperature gradient on drift-wave turbulence in the Large Plasma Device. Journal of Plasma Physics. 88 (4) https://doi.org/10.1017/S0022377822000630

G. Bal, B.V. Compernolle, P. Pribyl, M.J. Martin, J. Larson and T.A. Carter (2022). Reduction in RF sheath rectification with insulating antenna enclosure walls. Nuclear Fusion. 62 (8), 086043. https://doi.org/10.1088/1741-4326/ac7814

R. L. Barnett, D. L. Green, C. L. Waters, J. D. Lore, D. N. Smithe, J. R. Myra, C. Lau, B. Van Compernolle, and S. Vincena (2022). Ponderomotive force driven density modifications parallel to B0 on the LAPD. Physics of Plasmas. 29 (4), 042508. https://doi.org/10.1063/5.0071162

R.L.Barnett, D.L.Green, C.L.Waters, J.D.Lore, D.N.Smithe, J.R.Myra (2022). RF-transpond: A 1D coupled cold plasma wave and plasma transport model for ponderomotive force driven density modification parallel to B0. Computer Physics Communications. 274 108286. https://doi.org/10.1016/j.cpc.2022.108286

Filipe D. Cruz, Derek B. Schaeffer, Fábio Cruz, and Luis O. Silva, "Laser-driven, ion-scale magnetospheres in laboratory plasmas. II. Particle-in-cell simulations,” Physics of Plasmas 29, 032902 (2022); https://doi.org/10.1063/5.0084354

D. B. Schaeffer, F. D. Cruz, R. S. Dorst, F. Cruz, P. V. Heuer, C. G. Constantin, P. Pribyl, C. Niemann, L. O. Silva, and A. Bhattacharjee, Laser-driven, ion-scale magnetospheres in laboratory plasmas. I. Experimental platform and first results," Physics of Plasmas 29, 042901 (2022);
https://aip.scitation.org/doi/10.1063/5.0084353

2021

Sklodowski, K., Tripathi, S., & Carter, T. (2021). Evolution of an arched magnetized laboratory plasma in a sheared magnetic field. Journal of Plasma Physics, 87(6), 905870616. https://doi.org/10.1017/S0022377821001239

S. Ghazaryan, M. Kaloyan, and C. Niemann, "Silica Raman scattering probe for absolute calibration of Thomson scattering spectrometers," JINST 16 P08045 (2021); https://doi.org/10.1088/1748-0221/16/08/p08045

G.D. Rossi , T.A. Carter, B. Seo , J. Robertson , M.J. Pueschel , and P.W. Terr, "Electromagnetic turbulence in increased β plasmas in the Large Plasma Device," Journal of Plasma Physics, 87(4), 905870401 (2021) ; https://doi.org/10.1017/S0022377821000672

Schroeder, J. W. R. G., Howes, G., Kletzing, C. A., Skiff, F., Carter, T.A., Vincena, S., and Dorfman, S., "Laboratory measurements of the physics of auroral electron acceleration by Alfvén waves," Nature Communications 12, 3103, pp 1-9, (2021); https://doi.org/10.1038/s41467-021-23377-5

M. Jacobs, W. Gekelman, P. Pribyl, Y. Qian, and S. Abarzhi, "Experiments on plasma arcs at a water–air interface," Physics of Plasmas 28, 052114 (2021); https://doi.org/10.1063/5.0040880

2020

Chao Yu, Qingxi Yang, Yuntao Song, Jiahao Li, Hao Xu, Xiaokang Yang, Michl Binderbauer, Jon Schroeder, Yuanxu Song, Richard Goulding, Bart Van Compernolle, Troy Carter, Ning Li, Yongsheng Wang, Wei Song, "Study of the Design and Assembly of a High Harmonic Fast Wave Antenna for an LAPD", Science and Technology of Nuclear Installations, vol. 2021, Article ID 6691253, 8 pages, 2021. DOI: https://doi.org/10.1155/2021/6691253

J. Robertson, T. A. Carter and S. Vincena, "Propagation of shear Alfvén waves in a two-ion plasma and application as a diagnostic for the ion density ratio," J. Plasma Phys., 86, 905860613, (2020); https://doi.org/10.1017/S0022377820001403

Gekelman, W., DeHaas, T., Prior, C., and Yeates, A., "Using topology to locate the position where fully three-dimensional reconnection occurs," SN Appl. Sci. 2, 2187 (2020). https://doi.org/10.1007/s42452-020-03896-4

Xingchen Fan, Yhoshua Wug, Jia Han, Patrick Pribyl, and Troy Carter, "Electron density measurement using a partially covered hairpin resonator in an inductively coupled plasma," Review of Scientific Instruments 91, 113502 (2020);DOI: https://doi.org/10.1063/5.0025481

R. S. Dorst, P. V. Heuer, D. B. Schaeffer, C. G. Constantin, and C. Niemann, "Measurements of ion velocity distributions in a large scale laser-produced plasma,", Review of Scientific Instruments 91, 103103 (2020); DOI: https://doi.org/10.1063/5.0013447

J. Robertson, "Semi-analytic model for the electromagnetic field of a current-driven antenna in a cold, magnetized plasma," Journal of Plasma Physics, 86(4), 835860401 (2020); DOI: https://doi.org/10.1017/S0022377820000446

W. Gekelman, P. Pribyl, Z. Lucky, S. W. Tang, J. Han, and Y. Qian, "Design, construction and utilization of a university plasma laboratory," Journal of Plasma Physics, 86(3), 925860301 (2020); DOI: https://doi.org/10.1017/S002237782000063X (Dropbox: link to files)

Sam Razavian, Jia Han, Babak Jamali, Patrick Pribyl, Mostafa Hosseini, Yash Mehta, Mahdi Forghani, Walter Gekelman, Aydin Babakhani, "Plasma Characterization using a Silicon-Based Terahertz Frequency Comb Radiator," in IEEE Sensors Letters, doi: 10.1109/LSENS.2020.3013261.

J. R. Myra, C. Lau, B. Van Compernolle, S. Vincena, and J. C. Wright, "Measurement and modeling of the radio frequency sheath impedance in a large magnetized plasma," Physics of Plasmas 27, 072506 (2020); https://doi.org/10.1063/5.0010688

Jia Han, Patrick Pribyl, Walter Gekelman, and Alex Paterson, "Three-dimensional measurements of fundamental plasma parameters in pulsed ICP operation," Physics of Plasmas 27, 063509 (2020); https://doi.org/10.1063/5.0007288

G. J. Morales, "Response of a charged particle in contact with a chaotic thermostat to an oscillating electric field," Physics of Plasmas 27, 052105 (2020); https://doi.org/10.1063/5.0003017

P. V. Heuer, M. S. Weidl, R. S. Dorst, D. B. Schaeffer, S. K. P. Tripathi, S. Vincena, C. G. Constantin, C. Niemann, and D. Winske, "Laser-produced plasmas as drivers of laboratory collisionless quasi-parallel shocks," Phys. Plasmas, 27, 042103 (2020); https://doi.org/10.1063/1.5142396

Peter V. Heuer, Martin. S. Weidl, Robert S. Dorst, Derek B. Schaeffer, Shreekrishna K. P. Tripathi, Stephen Vincena, Carmen G. Constantin, Christoph Niemann, Lynn B. Wilson III, and Dan Winske, "Laboratory Observations of Ultra-low-frequency Analog Waves Driven by the Right-hand Resonant Ion Beam Instability," Ap. J. Lett., 891:L11, pp 1-6, (2020); DOI: https://doi.org/10.3847/2041-8213/ab75f4

2019

K. Papadopoulos, "Single Domain Nanoparticle Transmitters," Proceedings of IEEE APWC, paper 210, September 8-17, 2019, Granada, Spain

J. Han, P.Pribyl, W. Gekelman, A. Patterson, C. Qu, S. Lantham , M.J. Kushner, “3D measurements of plasma parameters in an industrial plasma etch tool”, Physics of Plasmas, 26, 103503 (2019); DOI: https://doi.org/10.1063/1.5115415

R. D. Sydora, S. Karbashewski, B. Van Compernolle, M. J. Poulos and J. Loughran, "Drift-Alfvén fluctuations and transport in multiple interacting magnetized electron temperature filaments", J. Plasma Phys., 85, 905850612 (2019); DOI: https://doi.org/10.1017/S0022377819000886

S. Bose, T. Carter, M. Hahn, S. Tripathi, S. Vincena, and D.W. Savin, "Measured reduction in Alfvén wave energy propagating through longitudinal gradients scaled to match solar coronal holes", Ap. J., 882, 183, pp 1-13, (2019); https://doi.org/10.3847/1538-4357/ab2fe0

B. Van Compernolle, M. J. Poulos, G. J. Morales, "Modifications produced on a large magnetized plasma column by a floating end-plate that is partially emissive: Experiment and theory,"
Phys. Plasmas 26, 122102 (2019); DOI: https://doi.org/10.1063/1.5126415

W. Gekelman, P. Pribyl, S. Vincena, S.W. Tang, and K. Papadopoulos, "Ferrite based antennae for launching Alfvén waves," Rev. Sci. Instrum., 90, 8, pp 1-7, (2019); https://doi.org/10.1063/1.5103171

An, Xin and Bortnik, Jacob and Van Compernolle, Bart, "Linear unstable whistler eigenmodes excited by a finite electron beam," Phys. Plasmas, 26, 082114 (2019); https://doi.org/10.1063/1.5097837

Morales, G. J. , “Two-dimensional chaotic thermostat and behavior of a thermalized charge in a weak magnetic field,” Phys. Rev. E, 99, 062218 (2019); https://journals.aps.org/pre/abstract/10.1103/PhysRevE.99.062218

J. E. Maggs and G. J. Morales, "Comparison of a 2D nonlocal transport model to ECRH experiments in LHD," Phys. Plasmas 26, 052505 (2019); https://doi.org/10.1063/1.5089461

S. Jin, M. J. Poulos , B. Van Compernolle , and G. J. Morales, Plasma flows generated by an annular thermionic cathode in a large magnetized plasma, Phys. Plasmas 26, 022105 (2019); https://doi.org/10.1063/1.5063597

M. J. Poulos, Model for the operation of an emissive cathode in a large magnetized-plasma, Phys. Plasmas 26, 022104 (2019); https://doi.org/10.1063/1.5063596

J. E. Maggs and G. J. Morales, Nonlocal transport in bounded two-dimensional systems: An iterative method, Phys. Rev. E 99, 013307 (2019), DOI:https://doi.org/10.1103/PhysRevE.99.013307

2018

S. Karbashewski, R. D. Sydora, B. Van Compernolle, and M. J. Poulos, Driven thermal waves and determination of the thermal conductivity in a magnetized plasma, Phys. Rev. E., 98, 051202(R) (2018) ; https://link.aps.org/doi/10.1103/PhysRevE.98.051202

Y. Zhao and G. J. Morales, Properties of a sinusoidally driven thermostat, Phys. Rev. E., 98, 022213 (2018) ; https://doi.org/10.1103/PhysRevE.98.022213

C. Prior and A.R. Yeates, Quantifying reconnective activity in braided vector fields, Phys. Rev. E., 98, 013204 (2018) ; https://doi.org/10.1103/PhysRevE.98.013204

W. Gekelman, S. W. Tang, T. DeHaas, S. Vincena, P. Pribyl, and R. Sydora, Spiky electric and magnetic field structures in flux rope experiments, Proceedings of the National Academy of Sciences Jun 2018, 201721343, (2018) ; https://doi.org/10.1073/pnas.1721343115

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. 1073/pnas.1721343115/-/DCSupplemental.

J. Bonde, Collisionless coupling of a high-beta expansion to an ambient, magnetized plasma. I. Rayleigh model and scaling, Phys. Plasmas 25, 042109 (2018) ; https://doi.org/10.1063/1.5029301

J. Bonde, S. Vincena, and W. Gekelman, Collisionless coupling of a high-beta expansion to an ambient, magnetized plasma. II. Experimental fields and measured momentum coupling, Phys. Plasmas 25, 042110 (2018) ; https://doi.org/10.1063/1.5029302

Morales, G. J., Investigation of a chaotic thermostat, , Phys. Rev. E 97, 032203 (2018). ; https://doi.org/10.1103/PhysRevE.97.032203

P. V. Heuer, M. S. Weidl, R. S. Dorst, D. B. Schaeffer, A. S. Bondarenko, S. K. P. Tripathi, B. Van Compernolle, S. Vincena, C. G. Constantin, C. Niemann, and D. Winske, Observations of a field-aligned ion/ion-beam instability in a magnetized laboratory plasma, Phys. Plasmas 25, 032104 (2018) ; https://doi.org/10.1063/1.5017637

W. Gekelman, T. DeHaas, P. Pribyl, S. Vincena, B. Van Compernolle, R. Sydora, and S. K. P. Tripathi,Nonlocal Ohms Law, Plasma Resistivity, and Reconnection During Collisions of Magnetic Flux Ropes, ApJ, 853, 1 (2018) ; https://doi.org/10.3847/1538-4357/aa9fec

2017

M. J. Martin, W. Gekelman, B. Van Compernolle, P. Pribyl, and T. Carter, Experimental Observation of Convective Cell Formation due to a Fast Wave Antenna in the Large Plasma Device, Phys. Rev. Lett. 119, 205002 (2017) ; https://doi.org/10.1103/PhysRevLett.119.205002

M S Weidl, P Heuer, D Schaeffer, R Dorst, D Winske, C Constantin, and C Niemann, Towards a parallel collisionless shock in LAPD, Journal of Physics: Conf. Series 900, 012020 (2017) ; https://doi.org/10.1088/1742-6596/900/1/012020

B. Van Compernolle and G. J. Morales, Avalanches driven by pressure gradients in a magnetized plasma, Phys. Plasmas, 24, 112302 (2017) ; https://doi.org/10.1063/1.5001321

A. S. Bondarenko, D. B. Schaeffer, E. T. Everson, S. E. Clark, B. R. Lee, C. G. Constantin, S. Vincena, B. Van Compernolle, S. K. P. Tripathi, D. Winske, and C. Niemann, Laboratory study of collisionless coupling between explosive debris plasma and magnetized ambient plasma, Phys. Plasmas, 24, 082110 (2017) ; http://dx.doi.org/10.1063/1.4995480

Xin An, Jacob Bortnik, Bart Van Compernolle, Viktor Decyk, and Richard Thorne, Electrostatic and whistler instabilities excited by an electron beam, Phys. Plasmas, 24, 072116 (2017); doi: http://dx.doi.org/10.1063/1.4986511

Timothy DeHaas and Walter Gekelman, Helicity transformation under the collision and merging of two magnetic flux ropes, Phys. Plasmas, 24, 072108 (2017); doi: http://dx.doi.org/10.1063/1.4991413

W. Gekelman, T. DeHaas, P. Pribyl, S. Vincena, B. Van Compernolle, and R. Sydora, Non-local Ohm’s law during collisions of magnetic flux ropes, Phys. Plasmas, 24, 070701 (2017); doi: http://dx.doi.org/10.1063/1.4990054

R.D. Sydora, B. Van Compernolle, S. Karbashewski, G.J. Morales, J.E. Maggs, Nonlinear Convective Heat Transport in Multiple Magnetized Electron Temperature Filaments, Problems of Atomic Science and Technolog, Series: No. 1, Plasma Physics (23), p. 100-10, (2017). ;ISSN 1562-6016. BAHT. 2017. publisher's link

D. B. Schaeffer, D. Winske, D. J. Larson, M. M. Cowee, C. G. Constantin, A. S. Bondarenko, S. E. Clark, and C. Niemann, On the generation of magnetized collisionless shocks in the large plasma device, Phys.Plasmas 24, 041405 (2017); doi: http://dx.doi.org/10.1063/1.4978882

J. W. R. Schroeder, F. Skiff, G. G. Howes, C. A. Kletzing, T. A. Carter, and S. Dorfman, Linear theory and measurements of electron oscillations in an inertial Alfvén wave, Phys.Plasmas 24, 032902 (2017); doi: http://dx.doi.org/10.1063/1.4978293

Dustin M. Fisher and Barrett N. Rogers, Two-fluid biasing simulations of the large plasma device, Phys.Plasmas 24, 022303 (2017); doi: http://dx.doi.org/10.1063/1.4975616

A. S. Bondarenko, D. B. Schaeffer, E. T. Everson, S. E. Clark, B. R. Lee, C. G. Constantin, S. Vincena, B. Van Compernolle, S. K. P. Tripathi, D. Winske & C. Niemann, Collisionless momentum transfer in space and astrophysical explosions, Nature Physics 13, 573–577, (2017) DOI: 10.1038/NPHYS4041

P.V. Heuer, D.B. Schaeffer, E.N. Knall, C.G. Constantin, L.R. Hofer, S. Vincena, S. Tripathi, and C. Niemann, Fast gated imaging of the collisionless interaction of a laser-produced and magnetized ambient plasma, High Energy Density Physics 22 (2017); DOI: http://dx.doi.org/10.1016/j.hedp.2016.12.003

2016

Martin S. Weidl, Dan Winske, Frank Jenko, and Chris Niemann, Hybrid simulations of a parallel collisionless shock in the large plasma device, Phys. Plasmas, 23, 122102 (2016); DOI:10.1063/1.4971231

B. Van Compernolle, X. An, J. Bortnik, R. M. Thorne, P. Pribyl and W. Gekelman, Laboratory simulation of magnetospheric chorus wave generation, Plasma Phys. Control. Fusion 59, 014016 (2016); DOI: 10.1088/0741-3335/59/1/014016

M. J. Poulos and G. J. Morales, Transport properties of a hollow pressure filament in a magnetized plasma, Phys. Plasmas, 23, 092302 (2016); DOI: 10.1063/1.4962574

M. E. Koepke, S. M. Finnegan, S. Vincena, D. J. Knudsen, S. H. Nogami and D. Vassiliadis, Laboratory evidence for stationary inertial Alfvén waves, Plasma Phys. Control. Fusion 58, 084006 (2016); doi:10.1088/0741-3335/58/8/084006

J.W. R. Schroeder, F. Skiff, C. A. Kletzing, G. G. Howes, T. A. Carter, and S. Dorfman, Direct measurement of electron sloshing of an inertial Alfvén wave, Geophys. Res. Lett., 43, 4701–4707, (2016); DOI:10.1002/2016GL068865

W. Gekelman, T. De Haas, W. Daughton, B. Van Compernolle, T. Intrator, and S. Vincena, Pulsating Magnetic Reconnection Driven by Three-Dimensional Flux-Rope Interactions, Phys. Rev. Lett. 116, 235101 (2016); DOI: 10.1103/PhysRevLett.116.235101

S. Dorfman and T. A. Carter, Observation of an Alfvén Wave Parametric Instability in a Laboratory Plasma, Phys. Rev. Lett. 116, 195002 (2016); DOI:10.1103/PhysRevLett.116.195002

W. Gekelman, T. DeHaas, B. Van Compernolle, W. Daughton, P. Pribyl, S. Vincena and D. Hong, Experimental study of the dynamics of a thin current sheet, Phys. Scr. 91 054002 (2016); doi:10.1088/0031-8949/91/5/054002

X. An, B. Van Compernolle, J. Bortnik, R.M. Thorne, L. Chen, and W. Li, Resonant excitation of whistler waves by a helical electron beam, Geophys. Res. Lett., 43 (2016); doi:10.1002/2015GL067126.

D. J. Drake, G. G. Howes, J. D. Rhudy, S. K. Terry, T. A. Carter, C. A. Kletzing, J. W. R. Schroeder, and F. Skiff, Measurements of the nonlinear beat wave produced by the interaction of counterpropagating Alfvén waves, Phys Plasmas, 23, 022305 (2016); DOI:10.1063/1.4941977

Y. Wang, P. Pribyl, and W. Gekelman, A megawatt solid-state modulator for high repetition rate pulse generation, Rev. Sci. Instrum., 87, 023509 (2016); DOI: http://dx.doi.org/10.1063/1.4941678

W. Gekelman, P. Pribyl, Z. Lucky, M. Drandell, D. Leneman, J. Maggs, S. Vincena, B. Van Compernolle, S. K. P. Tripathi, G. Morales, T. A. Carter, Y. Wang, and T. DeHaas, The upgraded Large Plasma Device, a machine for studying frontier basic plasma physics, Rev. Sci. Instrum., 87, 025105 (2016) http://dx.doi.org/10.1063/1.4941079

N.B. Moore, W. Gekelman, and P. Pribyl, Ion energy distribution function measurements by laser-induced fluorescence in a dual radio frequency sheath, J. Vac. Sci. Technol. A 34, 021303 (2016); http://dx.doi.org/10.1116/1.4941069

W. Gekelman, et al., Drift waves and chaos in a LAPTAG plasma physics experiment, Am. J. Phys. 84, 118, (2016). DOI: 10.1119/1.4936460

Wang, Y., W. Gekelman, P. Pribyl, B. Van Compernolle, and K. Papadopoulos (2016), Generation of shear Alfvén waves by repetitive electron heating, J. Geophys. Res. Space Physics, 121, doi:10.1002/2015JA022078.

2015

D. B. Schaeffer, E. T. Everson, A. S. Bondarenko, S. E. Clark, C. G. Constantin, D. Winske, W. Gekelman, and C. Niemann, Experimental study of subcritical laboratory magnetized collisionless shocks using a laser-driven magnetic piston, Phys. Plasmas, 22, 113101 (2015); DOI: 10.1063/1.4934983

J. Bonde, S. Vincena, and W. Gekelman, Electrostatic structure of a magnetized laser-produced plasma, Phys. Rev. E., 92, 051102(R) (2015); doi: 10.1103/PhysRevE.92.051102

R. D. Sydora , G. J. Morales , J. E. Maggs , and B. Van Compernolle, Three-dimensional gyrokinetic simulation of the relaxation of a magnetized temperature filament, Physics of Plasmas 22 , 102303 (2015); doi: 10.1063/1.4932346

T. DeHaas, W. Gekelman, B. Van Compernolle, Experimental study of a linear/non-linaer flux rope, Phys. Plasmas, 22, 082118 (2015); doi: 10.1063/1.4928888

D. M. Fisher, B. N. Rogers, G. D. Rossi, D. S. Guice, Three-dimensional two-fluid Braginskii simulations of the Large Plasma Device, Phys. Plasmas, 22, 092121 (2015) http://dx.doi.org/10.1063/1.4931090

B. Van Compernolle, X. An, J. Bortnik, R. M. Thorne, P. Pribyl, and W. Gekelman, Excitation of Chirping Whistler Waves in a Laboratory Plasma, Phys. Rev. Lett. 114, 245002 (2015) http://dx.doi.org/10.1103/PhysRevLett.114.245002

M. J. Martin, J. Bonde, W. Gekelman, and P. Pribyl, A resistively heated CeB6 emissive probe, Rev. Sci. Instrum., 86, 053507 (2015) [http://dx.doi.org/10.1063/1.4921838]

S. Dorfman and T. A. Carter, Non-linear Alfvén wave interaction leading to resonant excitation of an acoustic mode in the laboratory, Phys. Plasmas 22, 055706 (2015); DOI: 10.1063/1.4919275

B. Van Compernolle, G. J. Morales, J. E. Maggs, and R. D. Sydora, Laboratory study of avalanches in magnetized plasmas, Phys. Rev. E, 91, 031102(R) (2015). http://dx.doi.org/10.1103/PhysRevE.91.031102 .

J. E. Maggs, T.L. Rhodes, and G.J. Morales, Chaotic density fluctuations in L-mode plasmas of the DIII-D tokamak, Plasma Phys. Control. Fusion 57 045004 (2015) http://dx.doi.org/10.1088/0741-3335/57/4/045004

S. K. P. Tripathi, B. Van Compernolle, W. Gekelman, P. Pribyl, and W. Heidbrink, Excitation of shear Alfvén waves by a spiraling ion beam in a large magnetoplasma, Phys. Rev. E, 91, 013109 (2015) http://dx.doi.org/10.1103/PhysRevE.91.013109

2014

1. A. S. Bondarenko, D. B. Schaeffer, E. T. Everson, S. E. Clark, C. G. Constantin, and C. Niemann, Spectroscopic measurement of high-frequency electric fields in the interaction of explosive debris plasma with magnetized background plasma, Phys. Plasmas, v21, 122112 (2014). [DOI: 10.1063/1.4904374]

2. S. E. Clark, E. T. Everson, D. B. Schaeffer, A. S. Bondarenko, C. G. Constantin, C. Niemann, and D. Winske, Enhanced collisionless shock formation in a magnetized plasma containing a density gradient, Phys. Rev. E, v90, 041101(R) (2014), DOI: 10.1103/PhysRevE.90.041101

3. C. Niemann,W. Gekelman, C. G. Constantin, E. T. Everson, D. B. Schaeffer, A. S. Bondarenko, S. E. Clark, D.Winske, S. Vincena, B. Van Compernolle, and P. Pribyl, Observation of collisionless shocks in a large current-free laboratory plasma, Geophys. Res. Lett., 41, doi:10.1002/2014GL061820 (2014)

4. D. B. Schaeffer, E. T. Everson, A. S. Bondarenko, S. E. Clark, C. G. Constantin, S. Vincena, B. Van Compernolle, S. K. P. Tripathi, D. Winske, W. Gekelman, and C. Niemann, Laser-driven, magnetized quasi-perpendicular collisionless shocks on the Large Plasma Device, Phys. Plasmas, 21, 056312 (2014) [http://dx.doi.org/10.1063/1.4876608]

5. Wang, Y. and Gekelman, W. and Pribyl, P. and Papadopoulos, K., Enhanced loss of magnetic-mirror-trapped fast electrons by a shear Alfvén wave, Physics of Plasmas (1994-present), 21, 055705 (2014), DOI:http://dx.doi.org/10.1063/1.4874332

6. B. Van Compernolle, J. Bortnik, P. Pribyl, W. Gekelman, M. Nakamoto, X. Tao, and R. M. Thorne, Direct Detection of Resonant Electron Pitch Angle Scattering by Whistler Waves in a Laboratory Plasma, Phys. Rev. Lett. 112, 145006 – Published 10 April 2014 , http://dx.doi.org/10.1103/PhysRevLett.112.145006

7. Walter Gekelman, Bart Van Compernolle, Tim DeHaas and Stephen Vincena, Chaos in magnetic flux ropes, Plasma Phys. Control. Fusion 56 (2014) 064002 (18pp), doi:10.1088/0741-3335/56/6/064002

2013

1. Yiting Zhang, Mark J. Kushner, Nathaniel Moore, Patrick Pribyl, and Walter Gekelman, Space and phase resolved ion energy and angular distributions in single- and dual-frequency capacitively coupled plasmas, J. Vac. Sci. Technol. A 31(6), Nov/Dec 2013, [http://dx.doi.org/10.1116/1.4822100]

2. D. J. Drake, J. W. R. Schroeder, G. G. Howes, C. A. Kletzing, F. Skiff, T. A. Carter, and D. W. Auerbach, Alfvén wave collisions, the fundamental building block of plasma turbulence. IV. Laboratory experiment, Phys. Plasmas 20, 072901 (2013);https://doi.org/10.1063/1.4813242

3. G. G. Howes, K. D. Nielson, D. J. Drake, J. W. R. Schroeder, F. Skiff, C. A. Kletzing, and T. A. Carter, Alfvén wave collisions, the fundamental building block of plasma turbulence. III. Theory for experimental design, Phys. Plasmas 20, 072304 (2013); https://doi.org/10.1063/1.4812808

4. W. A. Farmer and G. J. Morales, Propagation of shear Alfvén waves in two-ion species plasmas confined by a nonuniform magnetic field, Phys. Plasmas 20, 082132 (2013); http://dx.doi.org/10.1063/1.4819776

5. Nathaniel B. Moore, Walter Gekelman Patrick Pribyl, Yiting Zhang, and Mark J. Kushner, 2-dimensional ion velocity distributions measured by laser-induced fluorescence above a radio-frequency biased silicon wafer, Phys. Plasmas, 20, 083506 (2013) DOI: [http://dx.doi.org/10.1063/1.4817275]

6. C.M. Cooper and W. Gekelman, Termination of a Magnetized Plasma on a Neutral Gas: The End of the Plasma, Phys. Rev. Lett., 110, 265001 (2013), DOI: 10.1103/PhysRevLett.110.265001

7. J. E. Maggs and G. J. Morales, Permutation entropy analysis of temperature fluctuations from a basic electron heat transport experiment, Plasma Phys. Control. Fusion 55 (2013) 085015 (7pp), doi:10.1088/0741-3335/55/8/085015

8. Y. Wang, W. Gekelman, and P. Pribyl, Hard x-ray tomographic studies of the destruction of an energetic electron ring, Rev. Sci. Instrum., v84, 053503 (2013) ; DOI:10.1063/1.4804354

9. D. A. Schaffner, T. A. Carter, G. D. Rossi, D. S. Guice, J. E. Maggs, S. Vincena, and B. Friedman, Turbulence and transport suppression scaling with flow shear on the Large Plasma Device, Phys. Plasmas 20, 055907 (2013); DOI: http://dx.doi.org/10.1063/1.4804637

10. B. Friedman, T. A. Carter, M. V. Umansky, D. Schaffner, and I. Joseph, Nonlinear instability in simulations of Large Plasma Device turbulence, Phys. Plasmas 20, 055704 (2013); DOI: http://dx.doi.org/10.1063/1.4805084

11. S. Dorfman and T. A. Carter, Nonlinear Excitation of Acoustic Modes by Large-Amplitude Alfvén Waves in a Laboratory Plasma, Phys. Rev. Lett., 110, 195001 (2013) DOI: 10.1103/PhysRevLett.110.195001

12. S.K.P. Tripathi and W. Gekelman, Dynamics of an Erupting Arched Magnetic Flux Rope in a Laboratory Plasma Experiment, Solar Phys., 0038-0938 (2013) DOI: 10.1007/s11207-013-0257-0

13. S. T. Vincena, W. A. Farmer, J. E. Maggs, and G. J. Morales, Investigation of an ion-ion hybrid Alfvén wave resonator, Phys. Plasmas, 20, 012110 (2013) http://dx.doi.org/10.1063/1.4775777.

14. C. Niemann, W. Gekelman, C. G. Constantin, E. T. Everson, D. B. Schaeffer, S. E. Clark, D. Winske, A. B. Zylstra, P. Pribyl, S. K. P. Tripathi, D. Larson, S. H. Glenzer, and A. S. Bondarenk, Dynamics of exploding plasmas in a large magnetized plasma, Phys. Plasmas 20, 012108 (2013). [http://dx.doi.org/10.1063/1.4773911]

2012

1. G. G. Howes, D. J. Drake, K. D. Nielson, T. A. Carter, C. A. Kletzing, and F. Skiff, Toward astrophysical turbulence in the laboratory, Phys. Rev. Lett. 109, 255001 (2012); http://dx.doi.org/10.1103/PhysRevLett.109.255001.

2. J.E. Maggs and G.J. Morales, Exponential power spectra, deterministic chaos and Lorentzian pulses in plasma edge dynamics, Plasma Phys. Control. Fusion, 54, 124041 (2012) doi:10.1088/0741-3335/54/12/124041

3. W W Heidbrink, H Boehmer, R McWilliams, A Preiwisch, Y Zhang, L Zhao, S Zhou, A Bovet, A Fasoli, I Furno, K Gustafson, P Ricci, T Carter, D Leneman, S K P Tripathi, and S Vincena, Measurements of interactions between waves and energetic ions in basic plasma experiments, Plasma Phys. Control. Fusion, v54, 124007 (2012); doi:10.1088/0741-3335/54/12/124007

4. B. Friedman, T. A. Carter, M. V. Umansky, D. Schaffner, and B. Dudson, Energy dynamics in a simulation of LAPD turbulence, Phys. Plasmas, 102307 (2012); http://dx.doi.org/10.1063/1.4759010.

5. C. Niemann, C.G. Constantin, D.B. Schaeffer, A. Tauschwitz, T. Weiland, Z. Lucky, W. Gekelman, E.T. Everson, and D. Winske, High-energy Nd:glass laser facility for collisionless laboratory astrophysics, JINST 7 P03010 (2012);.doi:10.1088/1748-0221/7/03/P03010

6. B. Van Compernolle and W. Gekelman, Morphology and dynamics of three interacting kink-unstable flux ropes in a laboratory magnetoplasma, Phys. Plasmas 19, 102102 (2012); http://dx.doi.org/10.1063/1.4755949.

7. D. A. Schaffner, T. A Carter, G. D. Rossi, D. S. Guice, J. E. Maggs, S. Vincena, and B. Friedman, Modification of Turbulent Transport with Continuous Variation of Flow Shear in the Large Plasma Device, Phys. Rev. Lett. 109, 135002 (2012); DOI: 10.1103/PhysRevLett.109.135002.

8. J.E. Maggs and G.J. Morales, Origin of Lorentzian pulses in deterministic chaos, Phys. Rev. E 86, 015401(R) (2012) DOI: 10.1103/PhysRevE.86.015401

9. W..A. Farmer and G.J. Morales, Cherenkov radiation of shear Alfvén waves in plasmas with two ion species, Phys Plasmas, 19, 092109 (2012); [http://dx.doi.org/10.1063/1.4751462]

10. W. Gekelman, E. Lawrence, and B. Van Compernolle, Three-dimensional reconnection involving magnetic flux ropes, ApJ, 753:131, (2012); [doi:10.1088/0004-637X/753/2/131].

11. A. V. Streltsov, J. Woodroffe, W. Gekelman, and P. Priby, Modeling the propagation of whistler-mode waves in the presence of field-aligned density irregularities, Phys Plasmas 19, 052104 (2012)l [http://dx.doi.org/10.1063/1.4719710].

12. Zhou, Shu, W.W. Heidbrink, H. Boehmer, R. McWilliams, T.A. Carter, S. Vincena, S.K.P. Tripathi, and B. Van Compernolle, Thermal plasma and fast ion transport in electrostatic turbulence in the large plasma device, Phys. Plasmas, 19, 055904 (2012); [http://dx.doi.org/10.1063/1.3695341].

13. Yuhou Wang, Walter Gekelman, Patrick Pribyl, and Konstantinos Papadopoulos, Scattering of Magnetic Mirror Trapped Fast Electrons by a Shear Alfvén Wave, Phys. Rev. Lett. 108, 105002 (2012); [DOI: 10.1103/PhysRevLett.108.105002].

14. Zhou, S., Heidbrink, W.W., Boehmer, H., McWilliams, R., Carter, T.A., Vincena, S., Friedman, B., and Schaffner, D., Sheared-flow induced confinement transition in a linear magnetized plasma, Phys. Plasmas, 19, 012116 (2012); [doi:10.1063/1.3677361].

2011

1. B. Van Compernolle, W. Gekelman, P. Pribyl, and C. M. Cooper, Wave and transport studies utilizing dense plasma filaments generated with a lanthanum hexaboride cathode, Phys. Plasmas, 18, 123501 (2011); [doi:10.1063/1.3671909].

2. Maggs J. E.; Morales G. J., Generality of Deterministic Chaos, Exponential Spectra, and Lorentzian Pulses in Magnetically Confined Plasmas, Phys. Rev. Lett. 107, 185003 (2011); DOI: 10.1103/PhysRevLett.107.185003.

3. D. J. Drake, C. A. Kletzing, F. Skiff, G. G. Howes, and S. Vincena, Design and use of an Elässer probe for analysis of Alfvén wave fields according to wave direction, Rev. Sci. Instrum., v82 103505 (2011); [doi:10.1063/1.3649950].

4. S. K. P. Tripathi, P. Pribyl, and W. Gekelman, Development of a radio-frequency ion beam source for fast-ion studies on the large plasma device, Rev. Sci. Instrum. 82, 093501 (2011); [doi:10.1063/1.3631628].

5. W. Gekelman, P. Pribyl, J. Wise, A. Lee, R. Hwang, C. Eghtebas, J. Shin, and B. Baker, Using plasma experiments to illustrate a complex index of refraction, Am. J. Phys. 79 (9), September 2011; http://dx.doi.org/10.1119/1.3591341

6. S. K. P. Tripathi and W. Gekelman, Laboratory simulation of solar magnetic flux rope eruptions, Proceedings of the International Astronomical Union 01 August 2010 6: 483-486, DOI: http://dx.doi.org/10.1017/S1743921311015845.

7. G. Hornung, B. Nold, J. E. Maggs, G. J. Morales, M. Ramisch, and U. Stroth, Observation of exponential spectra and Lorentzian pulses in the TJ-K stellarator, Phys. Plasmas 18, 082303 (2011); doi:10.1063/1.3622679.

8. Shu Zhou, W. W. Heidbrink, H. Boehmer, R. McWilliams, T. A. Carter, S. Vincena, and S. K. P. Tripathi, Dependence of fast-ion transport on the nature of the turbulence in the Large Plasma Device, Phys. Plasmas 18, 082104 (2011); doi:10.1063/1.3622203.

9. Chiang, F.C., Pribyl, P., Gekelman, W., Lefebvre, B., Chen, Li-Jen, and Judy, J. W. Microfabricated Flexible Electrodes for Multiaxis Sensing in the Large Plasma Device at UCLA, IEEE Trans. Plasma Sci. v39, n6, June (2011); doi:10.1109/TPS.2011.2129601.

10. Gekelman, W., Vincena, S., Van Compernolle, B., Morales, G.J., Maggs, J.E., Pribyl, P., and Carter, T.A., The many faces of shear Alfvén waves, Phys. Plasmas, 18, 055501, (2011); doi:10.1063/1.3592210.

11. Vincena, S. T., W. A. Farmer, J. E. Maggs, and G. J. Morales (2011), Laboratory realization of an ion-ion hybrid Alfvén wave resonator, Geophys. Res. Lett., 38, L11101, doi:10.1029/2011GL047399.

12. B. Jacobs, W. Gekelman, P. Pribyl, and M. Barnes, Temporally resolved ion velocity distribution measurements in a radio-frequency plasma sheath, Phys. Plasmas, 18, 053503 (2011); [doi:10.1063/1.3577575].

13. A. Collette and W. Gekelman, Structure of an exploding laser-produced plasma, Phys. Plasmas, 18, 055705 (2011); [doi:10.1063/1.3567525].

14. Auerbach, D.W., T.A. Carter, S. Vincena, and P. Popovich, Resonant drive and nonlinear suppression of gradient-driven instabilities via interaction with shear Alfvén waves, Phys. Plasmas, 18, 055708 (2011) [doi:10.1063/1.3574506].

15. Umansky M. V.; Popovich P.; Carter T. A.; Friedman B.; Nevins W. M., Numerical simulation and analysis of plasma turbulence the Large Plasma Device, Phys. Plasmas 18, 055709 (2011); [doi:10.1063/1.3567033].

16. A. V. Karavaev, N. A. Gumerov, K. Papadopoulos, Xi Shao, A. S. Sharma, W. Gekelman, Y. Wang, B. Van Compernolle, P. Pribyl, and S. Vincena, Generation of shear Alfvén waves by a rotating magnetic field source: Three-dimensional simulations, Phys. Plasmas, Phys. Plasmas, 18, 032113, 2011; DOI:10.1063/1.3562118.

17. B. Lefebvre, L.-J. Chen, W. Gekelman, P. Kintner, J. Pickett, P. Pribyl, and S. Vincena, Debye-scale solitary structures measured in a beam-plasma laboratory experiment, Nonlin. Process. Geophys., 18, 41-47, 2011; doi:10.5194/npg-18-41-2011.

2010

1. P. Popovich., M.V. Umansky, T.A. Carter, and B. Friedman, Modeling plasma turbulence and transport in the Large Plasma Device, Phys. Plasmas, 17, 122312, 2010; doi:10.1063/1.3527987.

2. Shu Zhou, W. W. Heidbrink, H. Boehmer, R. McWilliams, T. Carter, S. Vincena, S. K. P. Tripathi, P. Popovich, B. Friedman, and F. Jenko, Turbulent transport of fast ions in the Large Plasma Device, Phys. Plasmas, 17 092103, (2010); [doi:10.1063/1.3486532].

3. W. Gekelman, E. Lawrence, A. Collette, S. Vincena, B. Van Compernolle, P. Pribyl, M. Berger, and J. Campbell, Magnetic field line reconnection in the current systems of flux ropes and Alfvén waves, Phys. Scr. T142 014032 (2010); doi:10.1088/0031-8949/2010/T142/014032.

4. P. Pribyl, W. Gekelman, and A. Gigliotti, Direct measurement of the radiation resistance of a dipole antenna in the whistler/lower hybrid wave regime, Radio Sci., v45, RS4013, (2010); DOI: 10.1029/2009RS004266.

5. D. B. Schaeffer, N. L. Kugland, C. G. Constantin, E. T. Everson, B. Van Compernolle, C. A. Ebbers, S. H. Glenzer, and C. Niemann, A scalable multipass laser cavity based on injection by frequency conversion for noncollective Thomson scattering, Rev. Sci. Instrum. 81, 10D518 (2010). http://dx.doi.org/10.1063/1.3460626

6. Collette, A. and Gekelman, W., Structure of an exploding laser-produced plasma, Phys. Rev. Lett., 105, 195003 (2010); DOI:10.1103/PhysRevLett.105.195003.

7. Auerbach, D.W., Carter, T.A., Vincena, S., and Popovich, P., Control of gradient-driven instabilities using shear Alfvén beat waves, Phys. Rev. Lett., 105, 13505 (2010); DOI: 10.1103/PhysRevLett.105.135005.

8. B. Lefebvre, L. Chen, W. Gekelman, P. Kintner, J. Pickett, P. Pribyl, S. Vincena, F.Chiang, and J. Judy, Laboratory measurements of electrostatic solitary structures generated by beam injection, Phys. Rev. Lett., v105, 115001, (2010); DOI: 10.1103/PhysRevLett.105.115001.

9. C.M. Cooper, W. Gekelman, P. Pribyl, and Z. Lucky, A new large area lanthanum hexaboride plasma source, Rev. Sci. Instrum, 81, 083503 (2010) 105, 075005 (2010); doi:10.1063/1.3471917.

10. S.K.P. Tripathi and W. Gekelman, Laboratory Simulation of Arched Magnetic Flux Rope Eruptions in the Solar Atmosphere, Phys. Rev. Lett. 105, 075005 (2010); DOI: 10.1103/PhysRevLett.105.075005.

11. B. Jacobs, W. Gekelman, P. Pribyl, and M. Barnes, Phase-Resolved Measurements of Ion Velocity in a Radio-Frequency Sheath, Phys. Rev. Lett., v05, 075001, (2010); DOI: 10.1103/PhysRevLett.105.075001.

12. S.T. Vincena, G.J. Morales, and J.E. Maggs, Effect of two ion species on the propagation of shear Alfvén waves of small transverse scale, Phys. Plasmas, 17, 052106 (2010); https://doi.org/10.1063/1.3422549

13. C. A. Kletzing, D. J. Thuecks, F. Skiff, S. R. Bounds, and S. Vincena, Measurements of Inertial Limit Alfvén Wave Dispersion for Finite Perpendicular Wave Number, Phys. Rev. Lett. 104, 095001 (2010); DOI: 10.1103/PhysRevLett.104.095001.

14. A.V. Karavaev, N.A. Gumerov, K. Papadopoulos, Xi Shao, A.S. Sharma, W. Gekelman, A. Gigliotti, P. Pribyl, and S. Vincena, Generation of whistler waves by a rotating magnetic field source, Phys. Plasmas, 17, 012102, 2010. http://dx.doi.org/10.1063/1.3274916

15. A. B. Zylstra, C. Constantin, E. T. Everson, D. Schaeffer, N. L. Kugland, P. Pribyl, and C. Niemanna, Ion velocity distribution measurements in a magnetized laser plasma expansion, JINST 5 P06004 (2010); doi:10.1088/1748-0221/5/06/P06004.

16. B. N. Rogers and P. Ricci, Low-frequency turbulence in a linear magnetized plasma, Phys. Rev. Lett., 104, 225002 (2010) DOI: 10.1103/PhysRevLett.104.225002

2009

1. E.T. Everson, P. Pribyl, C.G. Constantin, A. Zylstra, D. Schaeffer, N.L. Kugland, and C. Niemann, Design, construction, and calibration of a three-axis, high-frequency magnetic probe (B-dot probe) as a diagnostic of exploding plasmas, Rev. Sci. Instrum., v80, 113505, 2009; [doi:10.1063/1.3246785].

2. Y. Zhang, W. W. Heidbrink, S. Zhou, H. Boehmer, R. McWilliamsT.A. Carter, S. Vincena, W. Gekelman, and M.K. Lilley, Doppler-shifted cyclotron resonance of fast ions with circularly polarized shear Alfvén waves, Phys. Plasmas, 16, 055706, 2009. http://dx.doi.org/10.1063/1.3103813

3. T.A. Carter and J.E. Maggs, Modifications of turbulence and turbulent transport associated with a bias-induced confinement transition in the Large Plasma Device, 16, 012304, 2009; http://dx.doi.org/10.1063/1.3059410

4. J.A. Stillman, F.C Chiang, P. Pribyl, W. Gekelman, M. Nakamoto, and J.W. Judy, MEMS Electric-Field Probes for Laboratory Plasmas, J. Micromech. Systems, 18, n5, 2009. http://dx.doi.org/10.1109/JMEMS.2009.2029959

5. A. Gigliotti, W. Gekelman, P. Pribyl, S. Vincena, A. Karavaev, X. Shao, A. Surjalal Sharma, and D. Papadopoulos, Generation of polarized shear Alfvén waves by a rotating magnetic field source, Phys. Plasmas, 16, 092106, 2009; DOI:10.1063/1.3224030.

6. W. Horton, C. Correa, G.D. Chagelishvili, V.S. Avsarkisov, J.G. Lominadze, J.C. Perez, J.H. Kim, and T.A. Carter, On generation of Alfvénic-like fluctuations by drift-wave zonal flow system in large plasma device experiments, Phys. Plasmas, 16, 092102, 2009; http://dx.doi.org/10.1063/1.3211197.

7. E. Lawrence and W. Gekelman, Identification of a Quasiseparatrix Layer in a Reconnecting Laboratory Magnetoplasma, Phys. Rev. Lett., v103, 105002 (2009); http://dx.doi.org/10.1103/PhysRevLett.103.105002

8. W. Gekelman, M. Barnes, S. Vincena, and P. Pribyl, Correlation analysis of waves above a capacitive plasma applicator, Phys. Rev. Lett, v103, 045003, 2009; http://dx.doi.org/10.1103/PhysRevLett.103.045003.

9. M. Shi, D.C. Pace, G.J. Morales, J.E. Maggs, and T.A. Carter, Structures generated in a temperature filament due to drift-wave convection, Phys. Plasmas, 16, 062306, 2009; http://dx.doi.org/10.1063/1.3147863

10. D.J. Thuecks, C.A. Kletzing, F. Skiff, S.R. Bounds, and S. Vincena, Tests of collision operators using laboratory measurements of shear Alfvén wave dispersion and damping, Phys. Plasmas, 33461, 2009. http://dx.doi.org/10.1063/1.3140037

11. C. Constantin, W. Gekelman, P. Pribyl, E. Everson, D. Schaeffer, N. Kugland, R. Presura, S. Neff, C. Plechaty, S. Vincena, A. Collette, S. Tripathi, M. Villagran Muniz, C. Niemann, Collisionless interaction of an energetic laser produced plasma with a large magnetoplasma, Astrophys. Space. Sci., 2009; DOI 10.1007/s10509-009-0012-z.

2008

1. D. C. Pace, M. Shi, J. E. Maggs, G. J. Morales, and T. A. Carter, Exponential frequency spectrum and Lorentzian pulses in magnetized plasmas, Phys. Plasmas, 15, 122304, 2008. http://dx.doi.org/10.1063/1.3023155

2. S.M. Finnegan, M.E. Koepke, and D.J. Knudsen, The dispersive Alfvén wave in the time-stationary limit with a focus on the collisional and warm-plasma effects, Phys. Plasmas, 15, 052108, 2008. http://dx.doi.org/10.1063/1.2890774

3. Y. Zhang, W. W. Heidbrink, H. Boehmer, R. McWilliams, S. Vincena, T. A. Carter, W. Gekelman, D. Leneman, and P. Pribyl, Observation of fast-ion Doppler-shifted cyclotron resonance with shear Alfvén waves, Phys. Plasmas, 15, 102112, 2008. http://dx.doi.org/10.1063/1.2996323

4. W. Gekelman, S. Vincena, and A. Collette, Visualizing three-dimensional reconnection in a colliding laser plasma experiment, IEEE Trans. Plasma Sci., v36, n4, August, (2008). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4598997 DOI: 10.1109/TPS.2008.922928

5. A. Collette and W. Gekelman, Two-dimensional micron-step probe drive for laboratory plasma measurement, Rev. Sci. Instr., v79, 083505, 2008. http://dx.doi.org/10.1063/1.2972150

6. B. Van Compernolle, G. Morales, and W. Gekelman, Cherenkov radiation of shear Alfvén waves, Phys. Plasmas, 15, 082101, 2008. http://dx.doi.org/10.1063/1.2956334

7. D. C. Pace, M. Shi, J. E. Maggs, G. J. Morales, and T. A. Carter, Exponential Frequency Spectrum in Magnetized Plasmas, Phys. Rev. Lett, v101, 085001, 2008. http://dx.doi.org/10.1103/PhysRevLett.101.085001

8. S. Vincena, W. Gekelman, M.A. Van Zeeland, J. Maggs, A. Collette, Quasielectrostatic whistler wave radiation from the hot electron emission of a laser-produced plasma, Phys. Plasmas, 15, 072114, 2008. http://dx.doi.org/10.1063/1.2956994

9. D. C. Pace, M. Shi, J. E. Maggs, G. J. Morales, and T. A. Carter, Spontaneous Thermal Waves in a Magnetized Plasma, Phys. Rev. Lett. 101, 035003 (2008). http://dx.doi.org/10.1103/PhysRevLett.101.035003

10. M.E. Koepke, S.M. Finnegan, S. Vincena, D.J. .Knudsen, and C. Chaston, Integrated campaign to study the stationary inertial Alfvén wave in the laboratory and space regimes, Plasma Phys. Control. Fusion, 50, 074004 (2008); http://dx.doi.org/10.1088/0741-3335/50/7/074004.

11. Y. Zhang, W. W. Heidbrink, H Boehmer, R. McWilliams, G. Chen, B.N. Breizman, S. Vincena, T. Carter, D. Leneman, W. Gekelman, P. Pribyl, and B. Brugman, Spectral gap of shear Alfvén waves in a periodic array of magnetic mirrors, Phys. Plasmas, 15, 012103, (2008). http://dx.doi.org/10.1063/1.2827518

2007

1. D. Leneman, Reflection of Alfvén waves from boundaries with different conductivities, Phys. Plasmas, 14, 122109, (2007). http://dx.doi.org/10.1063/1.2813459

2. B. Jacobs, W. Gekelman, P. Pribyl, M. Barnes, and M. Kilgore, Laser-induced fluorescence measurements in an inductively coupled plasma reactor, App. Phys. Lett., 91 161505, (2007). http://dx.doi.org/10.1063/1.2801393

3. Y. Zhang, H. Boehmer, W. W. Heidbrink, R. McWilliams, D. Leneman, and S. Vincena, Lithium ion sources for investigations of fast ion transport in magnetized plasmas, Rev. Sci. Instrum, 78, 013302 (2007). http://dx.doi.org/10.1063/1.2431086

4. W. Gekelman, A. Collette, and S. Vincena , Three-dimensional current systems generated by plasmas colliding in a background magnetoplasma, Phys. Plasmas, 14, 062109 (2007). http://dx.doi.org/10.1063/1.2741462

5. J.E. Maggs, T.A. Carter, and R.J. Taylor, Transition from Bohm to classical diffusion due to edge rotation of a cylindrical plasma, Phys. Plasmas, 14, 052507 (2007). http://dx.doi.org/10.1063/1.2722302

6. F.S. Tsung, G.J. Morales, and J. Tonge, Alfvén phenomena triggered by resonant absorption of an O-mode pulse, Phys. Plasmas, 14, 042101, 2007. http://dx.doi.org/10.1063/1.2711428

7. W. Gekelman, J. Wise, P. Pribyl, R. Baker, W. Layton, J. Skrzypek, P. Niknejadi, R. Ransom, D. Lee, R. Zarinshesnas, T. Kim, R. Buck, E. Warfel, T. Tasoff, J. Carmona, S. Skolnik, L. Kim, D. Furlong, and N. Gibson, Ion acoustic wave experiments in a high school plasma physics laboratory, Am. J. Phys. 75 (2) 2007. http://dx.doi.org/10.1119/1.2372470

8. Y. Zhang, H. Boehmer, W.W. Heidbrink, R. McWilliams, D. Leneman, and S. Vincena, Lithium ion sources for investigations of fast ion transport in magnetized plasma, Rev. Sci. Instrum., 78, 013302, 2007. http://dx.doi.org/10.1063/1.2431086

2006

1. V.A. Manasson, A. Avakian, A. Brailovsky, W. Gekelman, A. Gigliotti, L. Giubbolinni, I. Gordion, M. Felman, V. Khodos, V. Litvinov, P. Pribyl, L. Sadovnik, Time/Space-Probing Interferometer for Plasma Diagnostics, Proceedings of the 2006 Antenna Applications Symposium, Allerton Park, Monticello, Illinois, Sept 20-22, 2006. http://books.google.com/books?id=BRgsNQEACAAJ

2. P. Pribyl, W. Gekelman, M. Nakamoto, E. Lawrence, F. Chiang, J. Stillman, J. Judy, N. Katz, P. Kintner, and P. Niknejadi, Debye size microprobes for electric field measurements in laboratory plasmas, Rev. Sci. Instrum. 77, 073504 (2006) (8 pages). http://dx.doi.org/10.1063/1.2198730

3. S. Vincena and W. Gekelman, Drift-Alfvén wave mediated particle transport in an elongated density depression, Physics of Plasmas, vol.13, no.6, June 2006, pp. 64503-1-4. http://dx.doi.org/10.1063/1.2211087

4. G. J. Morales and J. E. Maggs, Differential equation model of an Alfvén wave maser, Phys. Plasmas 13, 052109 (2006) (13 pages). http://dx.doi.org/10.1063/1.2200629

5. T.A. Carter, B. Brugman, P. Pribyl, and W. Lybarger, Laboratory Observation of a Nonlinear Interaction between Shear Alfvén Waves, Phys. Rev. Lett., 96, 155001, 2006. http://dx.doi.org/10.1103/PhysRevLett.96.155001

6. D. Leneman, W. Gekelman, and J. Maggs, The plasma source of the Large Plasma Device at University of California, Los Angeles, Rev. Sci. Instrum., 77, 015108, 2006. http://dx.doi.org/10.1063/1.2150829

7. T.A. Carter, Intermittent turbulence and turbulent structures in a linear magnetized plasma, Phys. Plasmas, 13, 010701-1 , 2006. http://dx.doi.org/10.1063/1.2158929

8. B. Van Compernolle, W. Gekelman and P. Pribyl, Generation of suprathermal electrons and Alfvén waves by a high power pulse at the electron plasma frequency, Physics of Plasmas, vol 13, 092112, 2006. http://dx.doi.org/10.1063/1.2261850

2005

1. B. Van Compernolle, W. Gekelman, P. Pribyl, T. Carter, Generation of Alfvén waves by a high power pulse at the electron plasma frequency, Geo. Phys. Res. Letts., 32, L08101, 2005. http://dx.doi.org/10.1029/2004GL022185

2. N. Palmer, W. Gekelman, and S. Vincena, Measurement of Ion Motion in a Shear Alfvén Wave, Phys. Plasmas 12, 072102 (2005). http://dx.doi.org/10.1063/1.1930796

3, L. Zhao, W. W. Heidbrink, H. Boehmer, R. McWilliams, D. Leneman, and S. Vincena, Measurements of classical transport of fast ions, Phys. Plasmas 12, 052108 (2005). http://dx.doi.org/10.1063/1.1905863

4. S. Vincena and W. Gekelman, Visualizing shear Alfvén wave currents near the ion-cyclotron frequency, IEEE Trans. Plasma Sci., pp 552, v33, n2, (2005). http://dx.doi.org/10.1109/TPS.2005.845288

5. W. Gekelman and S. Vincena, Imaging complex three-dimensional Alfvén wave currents, Phys. Plasmas, IEEE Trans. Plasma Sci., pp 546, v33, n2, (2005). http://dx.doi.org/10.1109/TPS.2005.845353

6. W. Horton, J. Perez, T. Carter, and R. Bengtson, Vorticity probes and the characterization of vortices in the Kelvin-Helmholtz instability in the large plasma device experiment, Phys. Plasmas, 12, 2, (2005). http://dx.doi.org/10.1063/1.1830489

7. J. Maggs, G. Morales, and T. Carter, An Alfvén wave maser in the laboratory, Phys. Plasmas, 12, 1, (2005). http://dx.doi.org/10.1063/1.1823413

8. F. S. Tsung, J. W. Tonge,and G. J. Morales, Particle simulation of Alfvén waves excited at a boundary, Phys. Plasmas, 12, 1, (2005). http://dx.doi.org/10.1063/1.1832602

2004

1. S. Vincena, W. Gekelman, and J. Maggs, Shear Alfvén wave perpendicular propagation from the kinetic to the inertial regime, Phys. Rev. Lett, v93 n10, 2004. Experimental verification of the zero perpendicular group velocity turning point for Alfvén waves with a parallel phase speed near the electron thermal speed. http://dx.doi.org/10.1103/PhysRevLett.93.105003

2. M. VanZeeland and W. Gekelman, Laser-plasma diamagnetism in the presence of an ambient magnetized plasma, Phys. Plasmas, 11, 1, 2004. http://dx.doi.org/10.1063/1.1628233

3. H. Boehmer, D. Edrich, W. Heidbrink, R. McWilliams, L. Zhao, and D. Leneman, Operation of a 0.2-1.1 keV ion source within a magnetized laboratory plasma, Rev. Sci. Instr., 75, 4, (2004). http://dx.doi.org/10.1063/1.1646766

4. P. Pribyl and W. Gekelman, 24kA solid state switch for plasma discharge experiments, Rev. Sci. Instr., v75, n3, (2004). http://dx.doi.org/10.1063/1.1646732

2003

1. R. Boswell, Cosmic Waves in the Lab, Nature, 25, 352, (2003) [review of the Alfvén wave maser]. http://dx.doi.org/10.1038/425352a

2. Tsung FS, Morales GJ, Leboeuf JN., Dynamics of a supersonic plume moving along a magnetized plasma, Physical Review Letters, vol.90, no.5, 7 Feb. 2003, pp. 0550041-4. http://dx.doi.org/10.1103/PhysRevLett.90.055004

3. G. J. Morales, F. S. Tsung, J. N. Leboeuf. Dynamics of a supersonic plume moving along a magnetized plasma. AIP Conference Proceedings, no.669, 2003, pp. 749-5, http://dx.doi.org/10.1063/1.1594038

4. W. Gekelman, M. Van Zeeland, S. Vincena, P. Pribyl, Laboratory Experiments of Alfvén waves caused by rapidly expanding plasmas and their relationship to space phenomena, J. Geophys. Res. 108, SMP-8-1 (2003). http://dx.doi.org/10.1029/2002JA009741

5. J. Maggs and G. Morales, Magnetic fluctuations of a large nonuniform plasma column, Phys. Plasmas, v10, n6, (2003). http://dx.doi.org/10.1063/1.1572814

6. J. Maggs and G. Morales, Laboratory realization of an Alfvén wave maser, Phys. Rev. Lett., v91, n3, (2003). http://dx.doi.org/10.1103/PhysRevLett.91.035004

7. C. Kletzing, S. Bounds, J. Martin-Hiner, W. Gekelman, C. Mitchell, Measurements of the shear Alfvén wave dispersion for finite perpendiular wave number, Phys. Rev. Lett, 90 (2003). A novel antenna is used to launch Alfvén waves with small perpendicular (to B ) wavelengths. http://dx.doi.org/10.1103/PhysRevLett.90.035004

8. M. Van Zeeland, W. Gekelman, S. Vincena, J. Maggs, Currents and shear Alfvén radiation generated by an expanding laser-produced plasma: perpendicular incidence, Phys. Plasmas, 10, 1243, (2003). http://dx.doi.org/10.1063/1.1564598

2002 (Facility fully operational)

1. W. Gekelman, LAPTAG - A Physics Outreach Program at UCLA, APS news Oct (2002).

2. C. Mitchell, J. Maggs, W. Gekelman, Field line resonances in a cylindrical Plasma, Phys. Plasmas, 9, 2909, (2002). Experiment on Alfvén field line resonances and comparison with theory. http://dx.doi.org/10.1063/1.1483310

2001

1. S. Rosenberg, W. Gekelman, A three dimensional experimental study of lower hybrid wave interactions with field aligned density depletions, Jour. Geophys. Res., 106, 28,867 (2001). Experimental study of an ionospheric phenomena. http://dx.doi.org/10.1029/2000JA000061

2. D. Leneman, W. Gekelman, A novel angular motion feedthrough, Rev. Sci. Instrum, 72, 3473, (2001). http://dx.doi.org/10.1063/1.1374588

3. S. Vincena, W. Gekelman, and J. Maggs, Shear Alfvén waves in a magnetic beach and the roles of electron and ion damping, Phys. Plasmas, v8, n9, Sept., 2001. http://dx.doi.org/10.1063/1.1389092

4. M. VanZeeland, W.Gekelman, S. Vincena, and G. Dimonte, Production of Alfvén Waves by a Rapidly Expanding Dense Plasma, Phys. Rev. Lett., 2001. http://dx.doi.org/10.1103/PhysRevLett.87.105001

5. T. Drozdenko, G.J. Morales, Effect of Cross Field Flow on inertial Alfvén waves of small transverse scale length, Phys. Plasmas, 8, 3177, (2001). http://dx.doi.og/10.1063/1.1374587

6. T. Drozdenko, G.J. Morales, Nonlinear effects resulting from the interaction of large-scale Alfvén wave with a density filament, Phys. Plasmas, 8, 3265 (2001). http://dx.doi.org/10.1063/1.1376652

7. Mitchell, C.; Vincena, S.; Maggs, J.; Gekelman, W., Laboratory observation of Alfvén resonance. Geophys. Res. Lett., vol.28, (no.5), American Geophys. Union, 1 March 2001. p.923-6. http://dx.doi.org/10.1029/2000GL012165

2000

1. S. Rosenberg and W.Gekelman, A three-dimensional experimental study of lower hybrid wave interactions with field-aligned density depletion, Geophys. Res. Lett, 27, 859-862 (2000). http://dx.doi.org/10.1029/2000JA000061

2. W.Gekelman, S. Vincena, N. Palmer, P. Pribyl, D. Leneman, C. Mitchell, J. Maggs, Experimental Measurements of the Propagation of large-amplitude shear Alfvén waves, Plasma Phys. Control. Fusion, 42, B15-B26 (2000). http://dx.doi.org/10.1088/0741-3335/42/12B/302

3. T. Drozdenko, G.J. Morales, Interaction of a Shear Alfvén wave with a filamentary density perturbation in a low beta plasma, Phys. Plasmas, 7, 823, (2000). http://dx.doi.org/10.1063/1.873878

4. Burke AT, Maggs JE, Morales GJ, Experimental study of fluctuations excited by a narrow temperature filament in a magnetized plasma, [Journal Paper] Physics of Plasmas, vol.7, no.5, May 2000, pp. 1397-407. http://dx.doi.org/10.1063/1.873957

5. Burke AT, Maggs JE, Morales GJ, Experimental study of classical heat transport in a magnetized plasma, [Journal Paper] Physics of Plasmas, vol.7, no.2, Feb. 2000, pp. 544-53. http://dx.doi.org/10.1063/1.873840

6. Study of Fluctuations that spontaneously develop in a skin depth size temperature filament. A.T. Burke, J. Maggs, G. Morales, "Spontaneous Fluctuations of a Temperature Filament in a Magnetized Plasma, Phys. Rev. Lett., 84, 1451 (2000). http://dx.doi.org/10.1103/PhysRevLett.84.1451

7. Penano JR, Morales GJ, Maggs JE, Drift-Alfvén fluctuations associated with a narrow pressure striation, [Journal Paper] Physics of Plasmas, vol.7, no.1, Jan. 2000, pp. 144-57. http://dx.doi.org/10.1063/1.873789


1994 - 1999

1. D. Leneman, W. Gekelman, and J. Maggs, Laboratory Observations of Shear Alfvén Waves Launched from a Small Source, Phys. Rev. Letters, 82, 2673-2676 (1999). http://dx.doi.org/10.1103/PhysRevLett.82.2673

2. W. Gekelman, Review of laboratory experiments on Alfvén waves and their relationship to space observations, Jour. Geophys. Res., 104,14,14,417-14,435 (1999). http://dx.doi.org/10.1029/98JA00161

3. S. Vincena, W. Gekelman, 3D Observations of Electromagnetic Ion Cyclotron Wave Propagation in a Laboratory Plasma Column, IEEE Transactions on Plasma Science, 27 (1), 1999. http://dx.doi.org/10.1109/27.763095

4. An atomic model for a helium d.c. discharge using the Los Alamos suite of atomic physics codes was used to calculate the density and temperature in the LAPD device. The results were compared with experimental data in: J. Abdalllah Jr., N. Palmer, W. Gekelman, J. Maggs, and R.E.H. Clark, Time-dependent kinetics model for a helium discharge plasma, J. Phys. B: At. Mol. Opt. Phys. 32 1001-1008 (1999). http://dx.doi.org/10.1088/0953-4075/32/4/015

5. Morales GJ, Maggs JE, Burke AT, Penano JR, Alfvénic turbulence associated with density and temperature filaments, [Conference Paper; Journal Paper] IOP Publishing. Plasma Physics and Controlled Fusion, vol.41, suppl.3A, March 1999, pp. A519-29. UK. http://dx.doi.org/10.1088/0741-3335/41/3A/045

6. Using military flight simulation techniques to view large plasma physics data sets: C. Mitchell, W. Gekelman, Real-time physics data-visualization system using Performer, Computers in Physics 12, 371 Jul/Aug 1998. http://dx.doi.org/10.1063/1.168690

7. Measurement of the electric field of whistler and lower hybrid waves at a density striation: S. Rosenberg, W.Gekelman, Electric Field Measurements of directly converted lower hybrid waves at a density striation, Geophys. Res. Letts., 25, 865 (1998). http://dx.doi.org/10.1029/98GL00382

8. A.T. Burke, J.E. Maggs and G.J. Morales, Observation of Simultaneous Axial and Transverse Classical Heat Transport in a Magnetized Plasma, Phys. Rev. Letters, 81, 3659 (1998). http://dx.doi.org/10.1103/PhysRevLett.81.3659

9. A thorough review of the properties of Alfvén wave cones in the context of space plasmas illustrating their three dimensional propagation and interference effects has been published and may be downloaded. W. Gekelman, S. Vincena, D. Leneman, J. Maggs, Laboratory Experiments on shear Alfvén waves and their relationship to space plasmas, Jour. of Geophys. Res., 102, 7225-7236 (1997). http://dx.doi.org/10.1029/96JA03683

10. Morales GJ, Maggs JE, Structure of kinetic Alfvén waves with small transverse scale length, Physics of Plasmas, vol.4, no.11, Nov. 1997, pp. 4118-25. http://dx.doi.org/10.1063/1.872531

11. Maggs JE, Morales GJ, Gekelman W., Laboratory studies of field-aligned density striations and their relationship to auroral processes, Physics of Plasmas, vol.4, no.5, pt.2, May 1997, pp. 1881-8. http://dx.doi.org/10.1063/1.872331

12. Penano JR, Morales GJ, Maggs JE, Properties of drift waves in a filamentary density depletion, Physics of Plasmas, vol.4, no.3, March 1997, pp. 555-65. http://dx.doi.org/10.1063/1.872153

13. The three dimensional current structure of Alfvén wave cones is presented in: W. Gekelman, S. Vincena, D. Leneman, Experimental Observations of Shear Alfvén waves generated by narrow current channels, Plasma Phys. and Control. Fusion, 39, A101-A112 (1997). doi:10.1088/0741-3335/39/5A/011

14. Maggs JE, Morales GJ, Fluctuations associated with a filamentary density depletion, Physics of Plasmas, vol.4, no.2, Feb. 1997, pp. 290-9. http://dx.doi.org/10.1063/1.872089

15. Maggs JE, Morales GJ, Magnetic fluctuations associated with field-aligned striations, [Journal Paper] Geophysical Research Letters, vol.23, no.6, 15 March 1996, pp. 633-6. Publisher: American Geophys. Union, USA. http://dx.doi.org/10.1029/96GL00302

16. Laboratory study of the interaction of a whistler wave with a density striation showing its direct conversion to lower-hybrid waves: J.F. Bamber, J.E. Maggs, and W. Gekelman, Whistler Wave Interaction with a Density Striation: A Laboratory Investigation of an Auroral Process, Jour. of Geophys. Res., 100, 23795-23810 (1995). http://dx.doi.org/10.1029/95JA01852

17. Morales GJ, Loritsch RS, Maggs JE. Properties of Alfvén waves with transverse scale on the order of the skin-depth. [Conference Paper] 1994 International Conference on Plasma Physics. Joint Conference of the 10th Kiev International Conference on Plasma Theory, 10th International Congress on Waves and Instabilities in Plasmas, Combined with 6th Latin American Workshop on Plasma Physics. Proceedings. INPE. Part vol.3, 1994, pp. 189-92 vol.3. Sao Jose des Campos, Brazil.

18. Morales GJ, Loritsch RS, Maggs JE., Structure of Alfvén waves at the skin-depth scale, Physics of Plasmas, vol.1, no.12, Dec. 1994, pp. 3765-74. http://dx.doi.org/10.1063/1.870850

19. W. Gekelman, D. Leneman, J. Maggs, S. Vincena, Experimental Observation of Alfvén wave cones, Phys. Plasmas, 1, 3775 (1994). http://dx.doi.org/10.1063/1.870851

20. Srivastava S, Morales GJ, Maggs JE., Nonlinear Landau damping of resonantly excited fields in nonuniform plasmas, Physics of Plasmas, vol.1, no.3, March 1994, pp. 567-78. http://dx.doi.org/10.1063/1.870802